

## ABB MEASUREMENT & ANALYTICS | DATA SHEET

## Endura AZ40

Oxygen and carbon monoxide equivalent (COe) analyzer



## **Measurement made easy** Superior technology and quality from the world leader in combustion gas analysis

## Oxygen only or oxygen plus combustibles

- increased combustion efficiency
- burner malfunction identification
- enhanced plant safety

## Close-coupled sample system

- integral flame arrestors
- stable sample temperature and pressure
- heated sample path

## **Comprehensive diagnostics**

- NAMUR-compliant diagnostic symbols
- supports predictive maintenance
- fully logged diagnostic events

## Automatic sensor calibration

- fully programmable schedule
- locally triggered

# Process logging and trending of all measured and calculated values

- oxygen and carbon monoxide equivalent (COe)
- process temperature measurement
- combustion efficiency calculation

## AZ40

The AZ40 oxygen and combustibles analyzer continuously samples and analyses combustion waste gases to determine the levels of excess oxygen and un-burned fuel (also known as combustibles and determined by measuring the carbon monoxide equivalent (COe)). Accurate measurement of both oxygen and COe is important for the safe, reliable and efficient operation of industrial combustion plant.

#### Close-coupled sample system

The sensor assembly is mounted on the process wall with the probe and filter assembly extending into the process gas stream. The sample is extracted from the process and fed through the sensor head using an air powered ejector. Oxygen analysis is made by an industry-standard zirconium oxide cell.

Carefully metered dilution air is added before un-burned combustibles are measured by a high-sensitivity catalytic sensor calibrated for COe. The dilution air ensures a sufficient supply of oxygen to enable the COe sensor to function during abnormal process conditions when very low combustion oxygen levels can occur.

The close-coupled extractive system enables careful temperature- and pressure-control of the sensors and sample gas. This provides a stable background for target gas measurement to enhance its accuracy.

Operational safety is ensured by the inclusion of a flame arrester in the sample path to prevent flash-back if the process gas combustible level exceeds the lower explosive limit (LEL) during start-up, shut down or process disturbance.

The sample path is maintained at high temperature to prevent acid gas condensation and corrosion.



Figure 1 AZ40 system

## Sample filter and blowback options

To enable long, maintenance-free operation, the sensor sample probe is fitted with a primary and (optional) secondary filter (recommended). The primary filter is designed to oscillate in the process gas stream to reduce the build-up of particulates. The optional blowback feature is fully programmable.

#### Blowback type





#### Figure 2 Blowback programming



Figure 4 Primary and secondary filters

Figure 3 Sensor fitted with blowback

4

#### Automatic sensor calibration

The AZ40 includes as standard, an automatic sensor calibration system that uses test gases of known concentrations to calibrate both sensors and ensure continual accuracy.

Solenoids controlling the calibration gases are incorporated into the AZ40 transmitter. Calibration can be triggered automatically on a timed schedule, or on demand using either the transmitter interface or a transmitter digital input.



Figure 5 Autocal unit

## **Comprehensive diagnostics**

Advanced diagnostics, in accordance with NAMUR NE107, classify alarms and warnings as 'Maintenance Required', 'Check Function', 'Failure' and 'Out-of-Specification'.

| NAMUR        | icons                                   |
|--------------|-----------------------------------------|
| ?            | Diagnostic icon – Out of Specification. |
|              | Diagnostic icon – Maintenance Required. |
| $\bigotimes$ | Diagnostic icon – Failure.              |
| V            | Diagnostic icon – Check Function.       |
| V            |                                         |

A 'Performance Log' containing details of measurements and coefficients for all calibrations and cycles holds up to 100 time-stamped events. When the log is full, the oldest data is overwritten by new entries.

| Audi             | t I    | Log                          | J                      |              |              |              | 4            | <b>&gt;</b>  | 201<br>1   | 5-04<br>4:00 | -09<br>:10 |              |            |            |            |   |    |      |  |          |          |     |     |     |    |    |   |   |   |             |          |              |              |
|------------------|--------|------------------------------|------------------------|--------------|--------------|--------------|--------------|--------------|------------|--------------|------------|--------------|------------|------------|------------|---|----|------|--|----------|----------|-----|-----|-----|----|----|---|---|---|-------------|----------|--------------|--------------|
| No.              | Eve    | nt                           |                        |              |              | Da           | te           |              | Ti         | .me          |            |              |            |            |            |   |    |      |  |          |          |     |     |     |    |    |   |   |   |             |          |              |              |
| 🛃 D1             | ١n     | Con                          | fig.                   |              |              | 201          | 5-0          | 4-09         | 13         | :57:         | 12         |              |            |            |            |   |    |      |  |          |          |     |     |     |    |    |   |   |   |             |          |              |              |
| 🛃 D2             | A      | lar                          | 'm L                   | .00          | ]            |              |              | 4            | 4          | <b>\$</b>    | 201<br>1   | 5-04<br>4:01 | -09<br>:28 |            |            |   |    |      |  |          |          |     |     |     |    |    |   |   |   |             |          |              |              |
| ¥1, 03<br>¥1, 04 | ∾ No.  |                              | Ever<br>C0e            |              | sh A         | ları         | n            | Date<br>2015 |            | 4-09         | Ti<br>12   |              | 00         |            |            |   |    |      |  |          |          |     |     |     |    |    |   |   |   |             |          |              |              |
| × 06             | ា<br>រ | 02<br>03                     | Di                     |              |              |              | C            | Log          |            |              |            | <b>&gt;</b>  | 201<br>1   | 4:00       | -09<br>:45 |   |    |      |  |          |          |     |     |     |    |    |   |   |   |             |          |              |              |
| 犠 07<br>🔌 08     | Û      | ① 04<br>① 05<br>① 06<br>① 07 | No.                    | ·····        | Ever<br>Stal |              | izin         | e            |            | Date<br>2015 | ••••••     | -09          | Ti<br>12   |            | 03         |   |    |      |  |          |          |     |     |     |    |    |   |   |   |             |          |              |              |
|                  | û 06   |                              | ۍ 06<br>በ 07           | ۍ 06<br>በ 07 | 습 D6<br>습 D7 | 습 D6<br>습 D7 | 습 D6<br>습 D7 | 습 D6<br>습 D7 |            |              | _          |              |            |            |            |   |    | -    |  | 02<br>03 | Co       | ıli | bro | ati | on | Lo | g | Į | 4 | <b>&gt;</b> | 201<br>1 | 5-04<br>4:01 | 1-09<br> :06 |
|                  |        |                              |                        |              |              |              |              |              | - <u>-</u> | 04           | No.        |              | Eve<br>Cal | nt<br>Aboi | rter       | н |    | Date |  | -12      | Ti<br>12 |     | 44  |     |    |    |   |   |   |             |          |              |              |
|                  |        |                              |                        | 05<br>06     | 8            |              |              | Abo          |            |              |            | 2015         |            |            |            |   |    |      |  |          |          |     |     |     |    |    |   |   |   |             |          |              |              |
|                  |        |                              | l Š                    | 07           | 8            |              | Cal<br>Cal   | АБол         |            |              |            | 2015         |            |            |            |   |    |      |  |          |          |     |     |     |    |    |   |   |   |             |          |              |              |
|                  |        |                              | <b>⊗</b><br>  <b>□</b> | 08  <br>1    |              |              |              |              |            |              |            |              |            |            |            |   |    |      |  |          |          |     |     |     |    |    |   |   |   |             |          |              |              |
|                  |        |                              |                        |              |              |              |              |              |            |              |            |              |            |            |            |   |    |      |  |          |          |     |     |     |    |    |   |   |   |             |          |              |              |
|                  |        |                              |                        |              |              | ]            |              |              |            |              |            |              |            |            |            | C | AL |      |  |          |          |     |     |     |    |    |   |   |   |             |          |              |              |

Figure 6 Performance log

## Logging and trending

All measured and calculated values are saved to an SD card and can be trended on screen (when selected). This feature benefits process disturbance analysis by providing a clear record of when and how a disturbance affected the  $O_2$ , COe and temperature readings.



Figure 7 Trending analysis

## SD card functionality

The SD card is also used to upload and download system configuration files. This provides a permanent record of configuration changes and enables analyzers to be cloned, saving valuable time when commissioning multiple systems. It also enables firmware upgrades in the field when additional functionality is required.



Figure 8 Inserting SD card



Figure 9 AZ40 pneumatic installation schematic

#### Item Description Instrument air supply to sensor assembly: (A) supply required: 350 to 700 ±10 kPa (50.0 to 100.0 ±1.5 psig) the dew point at line pressure must be at least 10 °C (18 °F) . below the minimum local ambient temperature at the plant site . maximum particle size in the air stream at the instrument must not exceed 3 microns maximum total oil or hydrocarbon content, exclusive of noncondensables, must be as close as possible to 0 w/w % or v/v %. – it must not exceed 1 ppm w/w or v/v under normal operating conditions (B) Shut-off valve (C)2-stage coalescing filtration (self-draining)\* Instrument air pressure regulator 3-way valve (optional for maintenance purposes only, (E)not necessary for operation) Aspirator suction pressure port: F • pressure required at port: -51.7 to -65.5 kPa (-7.5 to -9.5 psig) Aspirator suction pressure gauge (Magnahelic)\*: (G pressure range: 0 to -69 kPa (0 to -10 psig) (н) Test gas port (sensor test gas inlet) Probe filter / pressure gauge\*: (1)pressure range: 0 to 20 in H<sub>2</sub>O (inch WC)

| ltem    | Description                                                                                                                                                                                                                                                                                                                                      |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| J       | <ul> <li>Zero test gas (cylinder)***:</li> <li>mixed gas of O<sub>2</sub>/CO/N<sub>2</sub> balance</li> <li>nominal 1 % O<sub>2</sub> / CO to be 80 to 100 % of the CO range used</li> <li>must be certified for both O<sub>2</sub> and CO content</li> </ul>                                                                                    |
| K       | <ul><li>2-stage cylinder regulator for zero test gas</li><li>set to 1 bar (15 psig)</li></ul>                                                                                                                                                                                                                                                    |
|         | <ul> <li>Span test gas (compressed air supply or cylinder)***:</li> <li>concentration of O₂ to be 80 to 100 % of the O₂ range used</li> <li>compressed air supply may be used for a 0 to 25 % O₂ range (recommended)</li> <li>cylinder gas must be certified for O₂ content</li> <li>compressed air line may be defined as 20.95 % O₂</li> </ul> |
| M       | <ul><li>2-stage cylinder regulator for span test gas</li><li>set to 1 bar (15 psig)</li></ul>                                                                                                                                                                                                                                                    |
| (N)     | Flowmeter, test gas line                                                                                                                                                                                                                                                                                                                         |
| *       | Use 2-stage filtration only – required efficiency for 0.01 micron (particles and droplets, installed in order) 93 and 99.99 %.                                                                                                                                                                                                                   |
| **      | If gauges are fitted permanently, a shut-off valve must be used to prevent leakage from the gauge.                                                                                                                                                                                                                                               |
| ***     | Avoid locations near sources of heat – ambient temperature must not exceed 49 °C (120 °F).                                                                                                                                                                                                                                                       |
| Zero t  | est gas must be the test gas of lowest oxygen content.                                                                                                                                                                                                                                                                                           |
| Span    | test gas must be the test gas of highest oxygen content.                                                                                                                                                                                                                                                                                         |
|         | aximum accuracy, the highest CO test gas (CO span) must be<br>ined with the lowest (1 % nominal) oxygen test gas.                                                                                                                                                                                                                                |
| The o   | xygen span gas must have zero CO content (CO zero).                                                                                                                                                                                                                                                                                              |
| The o   | xygen span gas may be air (20.95 % O₂) – recommended.                                                                                                                                                                                                                                                                                            |
| Table 1 | Kow to proumatic installation schematic                                                                                                                                                                                                                                                                                                          |

Table 1 Key to pneumatic installation schematic



Figure 10 Environmental requirements

## Filter and probe assembly

Standard probe with filter



#### Standard probe with optional dual filter



#### Optional high temperature probe with filter



## Dimensions Transmitter

Dimensions in mm (in.)



#### Sensor

Dimensions in mm (in.)



| Nominal length | Total length including filter |
|----------------|-------------------------------|
| 600 (24)       | 850 (34)                      |
| 900 (36)       | 1250 (49)                     |
| 1200 (48)      | 1550 (61)                     |

Table 2 Endura AZ40 high temperature probe with filter

| Nominal length | Total length including filter |
|----------------|-------------------------------|
| 600 (24)       | 950 (37)                      |
| 900 (36)       | 1265 (50)                     |
| 1200 (48)      | 1550 (61)                     |
| 1500 (60)      | 1850 (73)                     |
| 1800 (72)      | 2150 (85)                     |
| 2100 (84)      | 2460 (97)                     |

| Nominal length | Total length including filter |
|----------------|-------------------------------|
| 600 (24)       | 1150 (45)                     |
| 900 (36)       | 1465 (57)                     |
| 1200 (48)      | 1750 (69)                     |
| 1500 (60)      | 2050 (81)                     |
| 1800 (72)      | 2350 (93)                     |
| 2100 (84)      | 2660 (105)                    |

 Table 4
 Endura AZ40 standard probe with primary filter and optional secondary filter

Table 3 Endura AZ40 standard probe with primary filter

## ...Dimensions

#### Sensor assembly with blowback assembly fitted (nominal dimensions)

Dimensions in mm (in.)



#### Probe flanges (all probe lengths) and mounting plates for standard probe flanges

Dimensions in mm (in).

Note. The pressure ratings for these flanges do not apply.







| Flange type  | A          | В         | C (Ø)       | D (PCD)    |
|--------------|------------|-----------|-------------|------------|
| ABB standard | 165 (6.50) | 12 (0.47) | 12.5 (0.50) | 140 (5.51) |



Table 5 ABB probe flange types

| Flange type   | А            | В         | C (Ø)     | D (PCD)      |
|---------------|--------------|-----------|-----------|--------------|
| ANSI 3 in 150 | 190.5 (7.50) | 12 (0.47) | 19 (0.75) | 152.4 (6.00) |



Table 6 4-Hole probe flange types and dimensions

| Flange type   | А           | В         | C (Ø)     | D (PCD)      |
|---------------|-------------|-----------|-----------|--------------|
| ANSI 4 in 150 | 228.6 (9.0) | 12 (0.47) | 19 (0.75) | 190.5 (7.50) |
| DIN 80 PN16   | 200 (7.87)  | 12 (0.47) | 18 (0.70) | 160 (6.30)   |
| DIN 100 PN16  | 220 (8.66)  | 12 (0.47) | 18 (0.70) | 180 (7.08)   |



Table 7 8-Hole probe flange types and dimensions

Weights Dimensions in mm (in.), weights in kg (lb).

| Nominal length | Unpacked weight | Packed weight |
|----------------|-----------------|---------------|
| 600 (24)       | 1.50 (3.30)     | 4.4 (9.70)    |
| 900 (36)       | 1.70 (3.75)     | 4.6 (10.14)   |
| 1200 (48)      | 1.95 (4.30)     | 4.85 (10.69)  |
| 1500 (60)      | 2.20 (4.85)     | 7.6 (16.75)   |
| 1800 (72)      | 2.40 (5.29)     | 7.8 (17.19)   |
| 2100 (84)      | 2.60 (5.73)     | 8.0 (17.63)   |

Table 8 Endura AZ40 standard temperature probe with filter

| Nominal length | Unpacked weight | Packed weight |
|----------------|-----------------|---------------|
| 600 (24)       | 1.80 (4.00)     | 4.70 (10.36)  |
| 900 (36)       | 2.02 (4.45)     | 4.90 (10.80)  |
| 1200 (48)      | 2.25 (5.00)     | 5.25 (11.57)  |
| 1500 (60)      | 2.47 (5.44)     | 7.90 (17.41)  |
| 1800 (72)      | 2.78 (6.13)     | 8.10 (17.85)  |
| 2100 (84)      | 2.92 (6.43)     | 8.30 (18.29)  |

Table 9 Endura AZ40 standard temperature probe with optional secondary filter

| Nominal length | Unpacked weight | Packed weight |
|----------------|-----------------|---------------|
| 600 (24)       | 1.10 (2.40)     | 5.10 (11.24)  |
| 900 (36)       | 1.35 (3.00)     | 5.35 (11.80)  |
| 1200 (48)      | 1.60 (3.50)     | 5.60 (12.34)  |

Table 10 Endura AZ40 high temperature probe with filter

| Unpacked weight | Packed weight |
|-----------------|---------------|
| 9.0 (20)        | 12 (26)       |
|                 |               |

Table 11 Endura AZ40 sensor assembly

| Packed weight |
|---------------|
| 11 (24)       |
|               |

Table 12 Endura AZ40 transmitter

## **Electrical connections**

Mains power



## Electrical connections Signal cable



#### **Customer-made connections**



## Specification

#### Range

#### O₂ span

- Minimum 0 to 5 %
  - Maximum 0 to 25 %

#### COe span

- Minimum 0 to 500 ppm
- Maximum 0 to 20,000 ppm (2.00 %)

#### Temperature zero

–46 to 1371 °C (–50 to 2500 °F)

#### Temperature span

- Minimum 260 °C (500 °F)
- Maximum 1649 °C (3000 °F)

#### Sensor response time to 63 % span $(t_{63})$

## O₂

< 3.5 seconds

#### COe

< 13 seconds

#### Display measurement accuracy

#### 02

±2.5 % of reading or ±0.5 % O2 whichever is greater

## COe

- ±20 ppm COe or ±2 % of selected span whichever is greater (from 200 to 999 ppm)
- ±400 ppm COe or ±2 % of selected span whichever is greater (from 1,000 to 20,000 ppm)

#### Temperature

Thermocouple type B, E, J, K, N, R, S and T

#### Analog output accuracy

#### 02

- $\pm 2.5$  % of reading or  $\pm 0.5$  % O2 whichever is greater COe
  - ±20 ppm COe or ±2 % of selected span whichever is greater (from 200 to 999 ppm)
  - ±400 ppm COe or ±2 % of selected span whichever is greater (from 1,000 to 20,000 ppm)

#### Temperature

Thermocouple type B, E, J, K, N, R, S, T

## Ambient operating temperature

#### Transmitter -20 to 55 °C (-4 to 131 °F)

-20 to

## Sensor

–20 to 70 °C (–4 to 158 °F)

#### Interconnecting cable

- Signal: -20 to 105 °C (-4 to 221 °F)
- Power: -40 to 105 °C (-40 to 221 °F) C(RU) AWM1/11 A/BFT1

#### Storage temperature

–40 to 85 °C (–40 to 185 °F)

#### **Operating humidity**

Up to 95 % RH, non condensing

#### **Ingress protection**

Transmitter IP66 / NEMA 4X Sensor IP55 / NEMA 4

#### Power supply requirements

Supply voltage 85 to 265 V AC, 50 / 60 Hz

Transmitter

#### <60 W Sensor

<730 W (during start up) and <310 W (when operating)

#### EMC

Emissions and immunity EN61326 Industrial specification

#### Safety

General safety CE (EN61010)

#### **Probe insertion length**

#### Dimensions in mm (in.)

S

| tandard prob     | e              |                              |
|------------------|----------------|------------------------------|
| No filter        | Primary filter | Primary and secondary filter |
| 600 (24)         | 950 (37)       | 1150 (45)                    |
| 900 (36)         | 1265 (50)      | 1465 (57)                    |
| 1200 (48)        | 1550 (61)      | 1750 (69)                    |
| 1500 (60)        | 1850 (73)      | 2050 (81)                    |
| 1800 (72)        | 2150 (85)      | 2350 (93)                    |
| 2100 (84)        | 2460 (97)      | 2660 (105)                   |
| Kale to so a set |                |                              |

#### High temperature probe

| No filter | High temperature filter |
|-----------|-------------------------|
| 600 (24)  | 850 (34)                |
| 900 (36)  | 1250 (49)               |
| 1200 (48) | 1550 (61)               |
|           |                         |

#### **Process connections**

Standard / High temperature probes

- ANSI 2 / 3 / 4 in.
- DIN 80 / 100

#### **Temperature range**

Standard probe -20 to 650 °C (0 to 1,200 °F) High temperature probe -20 to 1650 °C (0 to 3,000 °F)

#### Maximum process temperature by filter type

Standard probe Filter type

Primary

Maximum temperature 649 °C (1200 °F) 816 °C (1500 °F)

High temperature probe Probe length 600 mm (24 in.) 900 mm (36 in.) 1200 mm (48 in.)

Primary + secondary

## Maximum temperature

1650 °C (3000 °F) 1370 °C (2500 °F 1232 °C (2250 °F)

#### Process pressure range

±5 kPa (±20 in. WG)

#### Air supply

- 207 kPa at 15 l/min (standard temperature and pressure)
- 30.0 psi at 0.55 SCFM (standard temperature and pressure)

#### Calibration

Manual or automatic

#### Automatic calibration

#### AutoCal hardware

- Built-in solenoid valves for test gas flow
- Isolated solenoid valve control as standard, 24 V at 2 W per valve

#### **Blowback function**

Optional solenoid valve

#### **Transmitter enclosure**

#### Wall mount

- Painted stainless steel (approx dimensions 300 x 300 x 150 mm [11.8 x 11.8 x 5.9 in.])
- Optional NPT or metric gland entries

#### **Display and switches**

Display type

- Backlit, 89 mm (3.5 in.) color
- **Operator switches** 
  - 6

#### Analog outputs

#### Number

- 4 (standard)
- Output 1 to 4
  - Isolated 0 to 22 mA

#### Function

- Fixed retransmission functions
- O/P 1: process O<sub>2</sub>
- O/P 2: process COe
- O/P 3: process temperature
- O/P 4: combustion efficiency



## ....Specification

#### **Digital outputs**

#### Number

6

Туре

Normally closed 2 A at 230 V AC (30 V DC non-inductive)

Function

- Digital output functions
- Digital output 1: process alarm  $\mathsf{O}_2$
- Digital output 2: process alarm COe
- Digital output 3: process temperature alarm
- Digital output 4: combustion efficiency alarm
- Digital output 5: analyzer fault alarm
- Digital output 6: calibration in progress

#### **Digital inputs**

Number

4

Input

Volt-free contact

Input functions

Fixed functions:

- DI 1: remote calibration trigger
- DI 2: remote blowback trigger
- DI 3: remote zero gas trigger
- DI 4: remote span gas trigger

### **Digital communication**

MODBUS

### SD card option

#### Logs

Audit, alarm, calibration and diagnostics

Data logging

- + COe,  $\mathsf{O}_2$  , inlet and outlet temperature and efficiency
- Sample rate programmable between 1 second and 60 minutes

Configuration

Upload / download

#### Firmware

Field upgradable

#### Languages

English

## Ordering information

|                                                 |       | Trai | nsmi | tter |   | Ser | nsor |   |   | Pre | obe |    |   | A | dditi | onal |    |
|-------------------------------------------------|-------|------|------|------|---|-----|------|---|---|-----|-----|----|---|---|-------|------|----|
| Endura AZ40 oxygen and COe analyzer             | AZ40/ | Х    | Х    | Х    | Х | Х   | Х    | Х | Х | Х   | Х   | XX | Х | Х | Х     | ХХ   | XX |
| Transmitter options                             |       | •    |      |      |   |     |      |   |   |     |     |    |   |   |       |      |    |
| None (no transmitter required)                  |       | 0    |      |      |   |     |      |   |   |     |     |    |   |   |       |      |    |
| Standard (no communications)                    |       | 1    |      |      |   |     |      |   |   |     |     |    |   |   |       |      |    |
| Standard + Modbus                               |       | 2    |      |      |   |     |      |   |   |     |     |    |   |   |       |      |    |
| Transmitter cable entry type                    |       |      | _    |      |   |     |      |   |   |     |     |    |   |   |       |      |    |
| None (no gland pack)                            |       |      | 0    |      |   |     |      |   |   |     |     |    |   |   |       |      |    |
| Metric (M20 and M25 plastic gland pack)         |       |      | 1    |      |   |     |      |   |   |     |     |    |   |   |       |      |    |
| Imperial (½ and ¾ in. NPT plastic gland pack)   |       |      | 2    |      |   |     |      |   |   |     |     |    |   |   |       |      |    |
| Transmitter system type                         |       |      |      | 1    |   |     |      |   |   |     |     |    |   |   |       |      |    |
| None (no transmitter required)                  |       |      |      | 0    |   |     |      |   |   |     |     |    |   |   |       |      |    |
| Remote (transmitter included)                   |       |      |      | 2    |   |     |      |   |   |     |     |    |   |   |       |      |    |
| Sensor type                                     |       |      |      |      |   |     |      |   |   |     |     |    |   |   |       |      |    |
| None (no sensor required)                       |       |      |      |      | 0 |     |      |   |   |     |     |    |   |   |       |      |    |
| Oxygen only                                     |       |      |      |      | 1 |     |      |   |   |     |     |    |   |   |       |      |    |
| Oxygen + combustibles                           |       |      |      |      | 2 |     |      |   |   |     |     |    |   |   |       |      |    |
| SMA 90 to AZ40 upgrade kit (no sensor required) |       |      |      |      | 3 |     |      |   |   |     |     |    |   |   |       |      |    |
| Sensor cable entry type                         |       |      |      |      |   |     |      |   |   |     |     |    |   |   |       |      |    |
| None (no gland pack)                            |       |      |      |      |   | 0   |      |   |   |     |     |    |   |   |       |      |    |
| Metric (M20 and M25 plastic gland pack)         |       |      |      |      |   | 1   |      |   |   |     |     |    |   |   |       |      |    |
| Imperial (½ and ¾ in. NPT plastic gland pack)   |       |      |      |      |   | 2   |      |   |   |     |     |    |   |   |       |      |    |
| Smart sensor type                               |       |      |      |      |   |     |      |   |   |     |     |    |   |   |       |      |    |
| None (no sensor required)                       |       |      |      |      |   |     | 0    |   |   |     |     |    |   |   |       |      |    |
| AZ40 version                                    |       |      |      |      |   |     | 1    |   |   |     |     |    |   |   |       |      |    |
| SMA 90 to AZ40 upgrade kit                      |       |      |      |      |   |     | 2    |   |   |     |     |    |   |   |       |      |    |
| SMA 90 replacement sensor                       |       |      |      |      |   |     | 3    |   |   |     |     |    |   |   |       |      |    |
| Probe type                                      |       |      |      |      |   |     |      | _ |   |     |     |    |   |   |       |      |    |
| None (no probe required)                        |       |      |      |      |   |     |      | 0 |   |     |     |    |   |   |       |      |    |
| Standard                                        |       |      |      |      |   |     |      | 1 |   |     |     |    |   |   |       |      |    |
| High temperature                                |       |      |      |      |   |     |      | 2 |   |     |     |    |   |   |       |      |    |
| Nominal probe length                            |       |      |      |      |   |     |      |   |   |     |     |    |   |   |       |      |    |
| None (no probe required)                        |       |      |      |      |   |     |      |   | 0 |     |     |    |   |   |       |      |    |
| 600 mm (24 in.)                                 |       |      |      |      |   |     |      |   | 1 |     |     |    |   |   |       |      |    |
| 900 mm (36 in.)                                 |       |      |      |      |   |     |      |   | 2 |     |     |    |   |   |       |      |    |
| 1200 mm (48 in.)                                |       |      |      |      |   |     |      |   | 3 |     |     |    |   |   |       |      |    |
| 1500 mm (60 in.)                                |       |      |      |      |   |     |      |   | 4 |     |     |    |   |   |       |      |    |
| 1800 mm (72 in.)                                |       |      |      |      |   |     |      |   | 5 |     |     |    |   |   |       |      |    |
| 2100 mm (84 in.)                                |       |      |      |      |   |     |      |   | 6 |     |     |    |   |   |       |      |    |
|                                                 |       |      |      |      |   |     |      |   |   | -   |     | 1  | 1 | 1 |       |      | 1  |

## ...Ordering information

| -                                        |       |            |    |     |      |     |   |   |    |     |    |   |    |   |      |    |
|------------------------------------------|-------|------------|----|-----|------|-----|---|---|----|-----|----|---|----|---|------|----|
| Т                                        | ransı | mitt       | er |     | Sen  | sor |   |   | Pr | obe |    |   | Ad |   | onal |    |
| ndura AZ40 oxygen and COe analyzer AZ40/ | x )   | <b>(</b> ) | x  | X   | X    | Х   | X | X | X  | X   | ХХ | х | Х  | х | ХХ   | XX |
|                                          |       |            | 5  | See | bage | 21  |   |   |    |     |    |   |    |   |      |    |
| robe flange type                         |       |            |    |     |      |     |   |   |    |     |    |   |    |   |      |    |
| lone (no probe required)                 |       |            |    |     |      |     |   |   | 0  |     |    |   |    |   |      |    |
| BB (Heritage)                            |       |            |    |     |      |     |   |   | 1  |     |    |   |    |   |      |    |
| VIN 80 mm                                |       |            |    |     |      |     |   |   | 2  |     |    |   |    |   |      |    |
| VIN 100 mm                               |       |            |    |     |      |     |   |   | 3  |     |    |   |    |   |      |    |
| NSI 2 in. (no adapter)                   |       |            |    |     |      |     |   |   | 4  |     |    |   |    |   |      |    |
| NSI 3 in.                                |       |            |    |     |      |     |   |   | 5  |     |    |   |    |   |      |    |
| NSI 4 in.                                |       |            |    |     |      |     |   |   | 6  |     |    |   |    |   |      |    |
| robe filter options                      |       |            |    |     |      |     |   |   |    |     |    |   |    |   |      |    |
| lone (no filter required)                |       |            |    |     |      |     |   |   |    | 0   |    |   |    |   |      |    |
| tandard                                  |       |            |    |     |      |     |   |   |    | 1   |    |   |    |   |      |    |
| tandard + secondary *                    |       |            |    |     |      |     |   |   |    | 2   |    |   |    |   |      |    |
| tandard (high temperature)               |       |            |    |     |      |     |   |   |    | 3   |    |   |    |   |      |    |
| robe cable length                        |       |            |    |     |      |     |   |   |    |     |    |   |    |   |      |    |
| lone                                     |       |            |    |     |      |     |   |   |    |     | 00 |   |    |   |      |    |
| 0 m (33 ft.) standard                    |       |            |    |     |      |     |   |   |    |     | 11 |   |    |   |      |    |
| 5 m (82 ft.) standard                    |       |            |    |     |      |     |   |   |    |     | 21 |   |    |   |      |    |
| 0 m (164 ft.) standard                   |       |            |    |     |      |     |   |   |    |     | 31 |   |    |   |      |    |
| 5 m (246 ft.) standard                   |       |            |    |     |      |     |   |   |    |     | 41 |   |    |   |      |    |
| lowback                                  |       |            |    |     |      |     |   |   |    |     |    |   |    |   |      |    |
| lone                                     |       |            |    |     |      |     |   |   |    |     |    | 0 |    |   |      |    |
| lowback hardware                         |       |            |    |     |      |     |   |   |    |     |    | 1 |    |   |      |    |
| ertification                             |       |            |    |     |      |     |   |   |    |     |    |   |    |   |      |    |
| E only                                   |       |            |    |     |      |     |   |   |    |     |    |   | 1  |   |      |    |
| anguage                                  |       |            |    |     |      |     |   |   |    |     |    |   |    |   |      |    |
| nglish                                   |       |            |    |     |      |     |   |   |    |     |    |   |    | Е |      |    |
| ower supply                              |       |            |    |     |      |     |   |   |    |     |    |   |    |   |      |    |
| 15 V AC                                  |       |            |    |     |      |     |   |   |    |     |    |   |    |   | V1   |    |
| 30 V AC                                  |       |            |    |     |      |     |   |   |    |     |    |   |    |   | V2   |    |
| ptions                                   |       |            |    |     |      |     |   |   |    |     |    |   |    |   |      | -  |
| alibration set-up kit                    |       |            |    |     |      |     |   |   |    |     |    |   |    |   |      | C1 |
| tainless steel tag                       |       |            |    |     |      |     |   |   |    |     |    |   |    |   |      | S1 |

 $^{*}$  Secondary filter required when process temperature is between 650 and 815 °C (1200 and 1500 °F)

## Acknowledgements

 $\operatorname{\mathsf{MODBUS}}$  is a registered trademark of the Modbus-IDA organization.





## ABB Limited

### Measurement & Analytics

Oldends Lane Stonehouse Gloucestershire GL10 3TA UK Tel: +44 (0)1453 826 661 Fax: +44 (0)1453 829 671 Mail: instrumentation@gb.abb.com

#### **ABB** Limited

#### **Measurement & Analytics**

125 E. County Line Road Warminster PA 18974 USA Tel: +1 215 674 6000 Fax: +1 215 674 7183

#### abb.com/measurement

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents – in whole or in parts – is forbidden without prior written consent of ABB.

© 2017 ABB All rights reserved

DS/AZ40-EN Rev. C 11.2017