

ABB MEASUREMENT & ANALYTICS | DATA SHEET

Advance Optima AO2000 Series

Continuous gas analyzers

Measurement made easy Modular continuous gas analyzers

A wide variety of measurement technology

- Analyzer modules for all process and emission monitoring applications
- Up to four analyzer modules handling a total of six sample components
- 'Safety concept' for measuring flammable gases in Zone 2 and for measuring corrosive and toxic gases
- Performance-tested for emission monitoring in accordance with EN 15267

Straightforward handling

- Common controls, common connection technology
- Automatic calibration with air or integral calibration cells eliminating the need for test gas cylinders
- Modular design for ease of service
- Self-monitoring function indicates when maintenance is required

Application-oriented design

- Housing design for 19-inch rack mounting or wall mounting
- Optional gas extraction
- Ethernet, Modbus® and PROFIBUS® interfaces
- Configurable analog and digital inputs and outputs

User-friendly operation

- Simultaneous numeric display and bar graph of measured values on a large graphics panel
- Menu-driven operator interface
- Clear-text status messages

The modular product line

Overview

Advance Optima AO2000 Series is a modular product line used for continuous process gas analysis.

The product line consists of the following modules:

- Analyzer modules,
- Pneumatics module,
- Electronics module with system controller and I/O modules
- Housing with display and control unit
- System bus.

The modules can be arranged in various ways to form single or multiple analyzer systems.

The electronics module, power supply and housing with display and control unit are also collectively referred to as the 'central unit'.

Measuring technology (analyzer modules)

The following analyzer modules are available for selection:

Infrared photometer analyzer module	Uras26
Process photometer analyzer modules	Limas21 UV Limas21 HW
Oxygen analyzer modules	Manos206 Magnos28 Magnos27
Trace oxygen analyzer module	ZO23
• Thermal conductivity analyzer modules	Caldos25 Caldos27
• FID analyzer modules	Fidas24 Fidas24 NMHC
Laser analyzer module	LS25
Flasher de sector l'active se a sector	

• Electrochemical oxygen sensor

Each analyzer module consists of the sensor and associated electronics having its own processor.

The analyzer modules are connected to the system controller through the system bus. The laser analyzer module is connected to the central unit via Ethernet.

The analyzer modules are supplied with DC 24 V from an integral power supply or an external unit.

The electrochemical oxygen sensor is available as an option in combination with an analyzer module.

Pneumatic Module

The pneumatics module contains the following elements when fully equipped:

- One or three solenoid valves to control test gas supply
- One or two disposable filter elements for fine filtration
- One gas supply pump with coarse filter and capillary
- One or two flow monitors

The pneumatics module is always associated with an analyzer module and installed in the same housing as the analyzer module.

Electronics module, interfaces

The electronics module incorporates the system controller with the I/O-modules.

The system controller carries out the following functions:

- Processing and communicating the measured values supplied by the analyzer module sensor electronics
- Compensating measured values, e.g. cross sensitivity correction
- Controlling system functions, e.g. calibration
- Display and control functions
- Controlling associated systems, e.g. gas supply
- Communicating with external systems

The system controller communicates with the other functional units of the gas analyzer, such as the analyzer modules, via the system bus.

Interfaces for controlling associated systems and for communicating with external systems are located on the system controller (Ethernet 10/100/1000BASE-T interface) and on the I/O modules.

The **I/O modules** are attached and directly connected to the system controller board. There are six types of I/O modules:

- Profibus modules have one RS485 and one MBP interface.
- Modbus modules have one RS485 and one RS232 interface.
- Digital I/O modules have four digital inputs and four digital outputs.
- 2-way analog output modules have two analog outputs.
- 4-way analog output modules have four analog outputs.
- 4-way analog input modules have four analog inputs.

Examples of I/O module applications include:

- Output of measured values as current signals
- Output of status and alarm signals
- Calibration control
- Control of external solenoid valves and pumps
- Measurement range switching and feedback
- Feed of current or status signals from external analyzers
- Feed of status signals from peripherals

...The modular product line

Housing version

The system housing is available as a 19-inch rack-mount (model AO2020) or a wall-mount (model AO2040) unit with IP20 or IP54 protection (IP40 in the version for emissions measurement).

IP54 housing versions can be purged.

The display and control unit is located on the front panel of the housing when the electronics module is installed.

System bus

The gas analyzer's functional units are interconnected via the system bus.

The system bus structure is linear with a maximum length of 350 meters.

Only one electronics module with up to five I/O modules should be connected to a system bus structure.

Connection of sample gas conditioning modules

The SCC-F sample gas feed unit and the SCC-C sample gas cooler can be connected to the gas analyzer via the system bus by means of an I/O board installed in the sample gas feed unit.

Thus it is possible to display, monitor and control individual sample gas conditioning functions in the gas analyzer such as cooler temperature or condensate and flow status.

For further information, please refer to the 'System components and accessories for sample gas conditioning' data sheet.

Configuration of analyzer units and multiple analyzer systems

This data sheet contains specifications for all modules in the Advance Optima AO2000 Series modular product line.

This data sheet was not intended to be used for configuring an analyzer unit or a multiple analyzer system. For a quotation please contact your ABB sales representative who can also provide advice and support. Example 1 shows the modules and components that normally make up an analyzer unit as well as the selection possibilities for configuring an analyzer unit.

The modular product line allows modules and components to be formed into an analyzer unit (see example 1) or into multiple analyzer systems (see example 2).

Example 2: Multiple analyzer system variant (wall-mount housing)

Infrared analyzer module Uras26

Measurement principle

Non-dispersive infrared absorption in the λ = 2.5...8 μm wavelength range

Photometer to measure from 1 to 4 components with 1 or 2 beam paths and 1 or 2 receivers in each beam path

Sample components and measurement ranges

The Uras26 analyzer module has one physical measurement range per sample component. As an option, smaller measuring ranges can be electronically derived from the physical measurement range. The smallest range is measurement range 1.

The smallest measuring ranges specified in the following table refer to the 1st sample component in beam path 1.

•	mpon class 1 range class 2 range rang t with		Smallest meas. range Class 2 with calibration cell	Gas group ¹⁾
СО	0 50 ppm	0 10 ppm	0 50 ppm ²⁾	А
CO ₂	0 50 ppm	0 5 ppm	0 25 ppm ²⁾	А
NO	0 75 ppm	0 75 ppm	0 75 ppm ²⁾	А
SO ₂	0 100 ppm	0 25 ppm	0 25 ppm ²⁾	А
N ₂ O	0 50 ppm	0 20 ppm	0 50 ppm ²⁾	А
CH ₄	0 100 ppm	0 50 ppm	0 50 ppm ²⁾	А
NH₃	0 500 ppm	0 30 ppm	-	В
C_2H_2	0 200 ppm	0 100 ppm	0 100 ppm	В
C_2H_4	0 500 ppm	0 300 ppm	0 300 ppm	В
C_2H_6	0 100 ppm	0 50 ppm	0 50 ppm ²⁾	В
C ₃ H ₆	0 250 ppm	0 100 ppm	0 100 ppm ²⁾	В
C₃H ₈	0 100 ppm	0 50 ppm	0 50 ppm ²⁾	В
C_4H_{10}	0 100 ppm	0 50 ppm	0 50 ppm ²⁾	В
C_6H_{14}	0 500 ppm	0 100 ppm	0 100 ppm ²⁾	В
R 134a	0 100 ppm	0 50 ppm	0 50 ppm ²⁾	В
SF_6	0 5 ppm	0 4 ppm	-	В
H₂O	01000 ppm	0 500 ppm	0 500 ppm	С

1) See price information

2) The smallest measurement range 1 is shown. The largest measurement range should be at least four times larger.

Other sample components on request.

Measurement range quantity

1...4 measuring ranges per sample component

Largest measuring range

0 ...100 vol.% or 0 vol.%...saturation or 0 vol.%...LEL Measuring ranges within ignition limits cannot be provided.

Measurement range ratio

≤ 1:20

Measurement ranges with suppressed zero-point

Electronic zero-point suppression or differential measurement based on a base level > 0 with flowing reference gas, max. suppression ratio of 1:10

Stability

The following data only applies if all the influence variables (e.g. flow, temperature and air pressure) are constant. They apply to measurement range 1 in a delivered analyzer module.

Linearity deviation

≤ 1 % of span Option: linearization in accordance with EPA -specifications for automotive exhaust gas measurement

Repeatability

 ≤ 0.5 % of span

Zero point drift

≤ 1 % of span per week;
for ranges smaller than class 1 to class 2:
≤ 3 % of span per week

Span drift

≤ 1 % of measured value per week

Output fluctuation (2 σ)

 \leq 0.2 % of span at electronic T₉₀ time = 5 s (class 1) or = 15 s (class 2)

Detection limit (4 σ)

 \leq 0.4 % of span at electronic T₉₀ time = 5 s (class 1) or = 15 s (class 2)

Influence effects

Flow effect

Flow rate in the 20...100 l/h range:

Associated gas effect/cross sensitivity

Analyzer calibration should be based on an analysis of the sample gas.

Selectivation measures to reduce the associated gas effect (options): incorporation of interference filters or filter cells, internal electronic cross-sensitivity or carrier gas correction for one sample component by other sample components measured with the Uras26.

Temperature effect

Ambient temperature in permissible range

- at the zero point: ≤ 1 % of the span per 10 °C; for measuring ranges smaller than class 1 to class 2: ≤ 2 % of the span per 10 °C
- on the sensitivity with temperature compensation:
 ≤ 3 % of the measured value per 10 °C
- on the sensitivity with thermostat effect at 55 °C (optional):
- ≤ 1 % of the measured value per 10 °C

Air pressure effect

- at the zero point: no effect
- On sensitivity with pressure correction using an integrated pressure sensor: ≤ 0.2 % of the measured value per 1 % of air pressure change

The pressure sensor is located in the sample gas path if hoses are used as the internal gas lines. If tubing is used for internal gas lines, the pressure sensor is routed to the outside via a hose.

Power supply effect

DC 24 V ±5 %: ≤ 0.2 % of span

Dynamic response

Warm-up time

Approx. 30 minutes without thermostat; approx. 2 hours with thermostat

T₉₀ time

 T_{90} = 2.5 sec for measurement cell length = 200 mm and sample gas flow = 60 l/h without signal damping (low pass filter). Low-pass time constant adjustable from 0...60 sec

Calibration

Zero-point calibration

With inert gas, e.g. nitrogen, or with ambient air that is free of the sample component.

End-point calibration

With gas-filled calibration cells (optional) or with test gas mixtures. It is recommended to verify the calibration cell set values once a year. During calibration of a multi-component analyzer, possible cross-sensitivity and/or carrier gas corrections by internal or external measurement components are switched off. Therefore, corrected measurement components should be calibrated only using a test gas consisting of the measurement component and an inert gas like nitrogen.

Materials in contact with the sample medium

Analyzer (sample cells)

Tube: aluminum or gold-plated aluminum; window: CaF_2 , option: BaF_2 ; connectors: stainless steel 1.4571

Gas lines and connectors

FPM hoses or PTFE tubes with stainless steel connectors; Option: stainless steel tubes 1.4571

Sample gas inlet conditions

Temperature

The sample gas dew point should be at least 5 °C below the ambient temperature throughout the sample gas path. Otherwise, a sample gas cooler or condensate trap is required.

Pressure

The analyzer module is operated under atmospheric pressure; the sample gas outlet is open to atmosphere.

Internal pressure drop < 5 hPa with standard flow rate 60 l/h. Permissible absolute pressure range: 800...1250 hPa. Operation under lower absolute pressure (e.g. at altitudes above 2000 m) on request. Overpressure in the sample cell max. 500 hPa.

Flow rate

20...100 l/h

Corrosive gases

Highly corrosive associated gas components, e.g. chlorine (Cl_2) and hydrogen chloride (HCl), as well as gases or aerosols containing chlorine must be cooled or undergo prior absorption. Provide for housing purge.

Flammable gases

The analyzer module is suitable for measuring flammable gases and vapors under atmospheric conditions ($p_{abs} \le 1.1$ bar, oxygen content ≤ 21 vol.%). Temperature class: T4. If the sample gas is explosive in the event of a sample gas supply failure, then only seldom and briefly (in accordance with zone 2). Pressure in the sample gas path in normal operation $p_e \le 100$ hPa; in case of a sample gas supply failure the pressure must not exceed the maximum value $p_e = 500$ hPa. The version with gas paths designed as stainless steel tubes should be selected and housing purge with nitrogen should be provided when measuring flammable gases and vapors. Before using the analyzer module, the corrosion resistance against the specific sample gas must be checked.

Version in category 3G see page 36

Gas connections

The following illustration shows the assignment of the gas connections as an example for the three variants

- A 1 gas path with 1 sample cell,
- B 1 gas path with 2 sample cells in series andC 2 separate gas paths with 1 sample cell each.

The actual gas connection arrangement of an analyzer module is found in the analyzer data sheet for the delivered instrument.

1 Pressure sensor for external pressure measurement ¹⁾ 2 –

- 3 Sample gas inlet A or B or C gas path 1
- 4 Sample gas outlet A or C gas path 1
- **5** Purge gas inlet housing ¹⁾
- 6 Purge gas outlet housing ¹⁾ (also with flow sensor)
- 7 Sample gas inlet C gas path 2¹⁾
- 8 Sample gas outlet B or C gas path 2¹⁾
- 9 Reference gas inlet gas path 1¹⁾
- 10 Reference gas outlet gas path 1 ¹⁾
- Pneumatics module ¹⁾:
- 11 Sample gas inlet A or B or C gas path 1
- **12** End point gas inlet (with 3 solenoid valves) or sample gas inlet **C** gas path 2 (with flow sensor only)
- 13 Test gas/zero-point gas inlet (with 1 or 3 solenoid valves) or sample gas outlet C gas path 2 (with flow sensor only) – in this case to be connected to sample gas inlet 7
- 14 Sample gas outlet A or B or C gas path 1 to be connected to sample gas inlet 3
- 1) Option

Process photometer analyzer module Limas21 UV

Measurement principle and application

Gas filter correlation or wavelength comparison in ultraviolet and visible spectrum range λ = 200...600 nm

Photometer to measure from 1 to 4 components

Sample cells made from various materials are available for measuring in corrosive, toxic and flammable gases (see page 12).

Sample components and measurement ranges

The Limas21 UV analyzer module has one physical measurement range per sample component. As an option, smaller measuring ranges can be electronically derived from the physical

measurement range. The smallest range is measurement range 1.

Sample component	Smallest class 1 range	Smallest class 2 range	Gas group ¹⁾
NO ²⁾	0 50 ppm	0 10 ppm	А
SO ₂	0 150 ppm	0 25 ppm	А
NO ₂	0 250 ppm	0 50 ppm	В
NH₃	0 100 ppm	0 30 ppm	В
H₂S	0 50 ppm	0 25 ppm	В
Cl ₂	0 250 ppm	0 100 ppm	D
CS ₂	0 100 ppm	0 50 ppm	С
COS	0 500 ppm	0 250 ppm	С

1) See price information

 The UV-RAS (ultra-violet resonant absorption spectroscopy) method is used to make the analyzer selective to the sample component NO.

Other sample components on request.

Measurement range quantity

1...4 measuring ranges per sample component

Largest measuring range

0...100 vol.% or 0 vol.%...saturation or 0 vol.%...LEL Measuring ranges within ignition limits cannot be provided.

Measurement range ratio

Measurement ranges freely adjustable within a range ratio of 1:20 relative to the factory-set reference measuring range

Measurement ranges with suppressed zero-point

Electronic zero-point suppression, max. suppression ratio of 1:10

Stability

The following data only applies if all the influence variables (e.g. flow, temperature and air pressure) are constant. They apply to measurement range 1 in a delivered analyzer module.

Linearity deviation

≤ 1 % of span; option: linearization in accordance with EPA specifications for automotive exhaust gas measurement

Repeatability

 \leq 0.5 % of span

Zero point drift

 \leq 2 % of span per week; for measuring ranges smaller than class 1 to class 2: \leq 1.5 % of span per day (recommendation: daily automatic zero-point calibration)

Span drift

 \leq 1 % of measured value per week

Output fluctuation (2 σ)

 \leq 0.5 % of span with electronic T₉₀-time = 10 s; for measuring ranges smaller than class 1 to class 2: \leq 1 % of span

Detection limit (4 σ)

 \leq 1 % of span; for ranges smaller than class 1 to class 2: \leq 2 % of span

Influence effects

Flow effect

Flow rate in the 20...100 l/h range:

Associated gas effect/cross sensitivity

Analyzer calibration should be based on an analysis of the sample gas. Selectivation measures to reduce the associated gas effect (options): incorporation of filter cells or internal electronic crosssensitivity or carrier gas correction for one sample component by other sample components measured with the Limas21 UV.

Temperature effect

Ambient temperature in permissible range,

Sample cell thermostat control to +60 °C

- at the zero point: ≤ 1 % of the span per 10 °C; for measuring ranges smaller than class 1 to class 2: ≤ 2 % of the span per 10 °C
- on the sensitivity: ≤ 1 % of the measured value per 10 °C

Air pressure effect

- at the zero point: no effect
- On sensitivity with pressure correction using an integrated pressure sensor: ≤ 0.2 % of the measured value per 1 % of air pressure change

The pressure sensor is located in the sample gas path if hoses are used as the internal gas lines. If tubing is used for internal gas lines, the pressure sensor is routed to the outside via a hose.

Power supply effect

DC 24 V ±5 %: ≤ 0.2 % of span

Dynamic response

Warm-up time Approx. 2.5 hour

T₉₀ time

 $T_{90}=4~sec~for~measurement~cell~length=262~mm~and~sample~gas~flow=60~l/h~without~signal~damping~(low~pass~filter).$ Low-pass time constant adjustable from 0...60 sec

Calibration

Zero-point calibration

With inert gas, e.g. nitrogen, or with ambient air that is free of the sample component.

End-point calibration

With gas-filled calibration cells (optional) or with test gas. It is recommended to verify the calibration cell set values once a year.

During calibration of a multi-component analyzer, possible crosssensitivity and/or carrier gas corrections by internal or external measurement components are switched off. Therefore, corrected measurement components should be calibrated only using a test gas consisting of the measurement component and an inert gas like nitrogen.

Materials in contact with the sample medium

See page 12

Housing purge

Purge gas See page 12

Sample gas inlet conditions

Temperature

The sample gas dew point should be at least 5 °C below the ambient temperature throughout the sample gas path. Otherwise, a sample gas cooler or condensate trap is required.

Pressure

The analyzer module is operated under atmospheric pressure; the sample gas outlet is open to atmosphere. Internal pressure drop < 5 hPa with standard flow rate 60 l/h. Permissible absolute pressure range: 800...1250 hPa. Operation under lower absolute pressure (e.g. at altitudes above 2000 m) on request. Overpressure in the sample cell max. 500 hPa.

Flow rate

20...100 l/h

Corrosive, toxic and flammable gases See page 12

Gas connections

See page 13

Process photometer analyzer module Limas21 HW

Measurement principle and application

Limas21 HW is a multi-component analyzer for simultaneous measurement of nitrogen compounds in wet sulfur-free flue gas without converter.

Measurement principle

Photometer to measure NO, NO₂ and NH₃.

Selectivation on the sample component NO using the UV-RAS (ultra-violet resonant absorption spectroscopy) method.

Wavelength comparison in ultraviolet spectrum range λ = 200...600 nm.

Applications

Exhaust gas measurement for the development of combustion engines and methods for exhaust gas after-treatment, in particular for pure gas measurement after catalyst in

- Four-stroke gasoline and diesel engines,
- Catalysts for nitrogen oxide reduction.

Process measurement e.g. for monitoring, controlling and optimizing DeNOx SCR processes.

Sample components and measurement ranges (recommendations), stability data

Exhaust gas measurement for four-stroke gasoline and diesel engines

Sample component	Smallest range	Largest range
NO	0100 ppm	05000 ppm
NO ₂	0100 ppm	02500 ppm

Linearity deviation

 \leq 1 % of span. \leq 2 % of measured value in accordance with EPA- specifications for automotive exhaust gas measurement

Repeatability

≤ 0.25 % of span

Zero point drift

 \leq 1 ppm or \leq 1 % of span per 24 hours based on the smallest recommended measurement range (daily automatic zero-point calibration recommended)

Span drift

≤ 1 % of measured value per week

Output fluctuation (2 σ)

 \leq 400 ppb or \leq 0.4 % of span at electronic T₉₀ time = 5 sec

Detection limit (4 σ)

 \leq 800 ppb or \leq 0.8 % of span at electronic T₉₀ time = 5 sec

Diluted exhaust gas measurement for four-stroke gasoline and diesel engines, bag measurement

Sample component	Smallest range	Largest range
NO	010 ppm	0500 ppm
NO ₂	010 ppm	0500 ppm

Linearity deviation

 \leq 1 % of span, \leq 2 % of measured value in accordance with EPA- specifications for automotive exhaust gas measurement

Repeatability

≤ 0.25 % of span

Zero point drift

 \leq 250 ppb or \leq 2 % of span per 8 hours based on the smallest recommended measurement range (daily automatic zero-point calibration recommended)

Span drift

 \leq 1 % of measured value per week

Output fluctuation (2 σ)

 $NO \le 50~ppb~or \le 0.5~\%$ of span, $NO_2 \le 60~ppb~or \le 0.5~\%$ of span at electronic T_{90} time = 15 sec

Detection limit (4 σ)

 $NO \leq 100~ppb~or \leq 1~\%$ of span, $NO_2 \leq 120~ppb~or \leq 1~\%$ of span at electronic T_{90} time = 15 sec

Process measurement

Sample component	Smallest range	Largest range
NO	0100 ppm	01000 ppm
NO ₂	0100 ppm	0 500 ppm
NH ₃	0100 ppm	0 500 ppm

Linearity deviation

≤ 1 % of span

Repeatability

≤ 0.25 % of span

Zero point drift

 \leq 1 ppm or \leq 1 % of span per 24 hours based on the smallest recommended measurement range (daily automatic zero-point calibration recommended)

Span drift

 \leq 1 % of measured value per week

Output fluctuation (2 σ)

 $\leq 150 \mbox{ ppb} \mbox{ or } \leq 0.15 \mbox{ \% of span at electronic T_{90} time = 30 sec}$

Detection limit (4 σ)

 \leq 300 ppb or \leq 0.3 % of span at electronic T₉₀ time = 30 sec

Measurement ranges

Quantity

1...4 measuring ranges per sample component

Measurement range ratio

max. 1:20; Measurement ranges freely adjustable within a range ratio of 1:20 relative to the factory-set reference measurement range.; max. 1:50 for fixed measurement ranges in accordance with EPA- specifications for automotive exhaust gas measurement.

Influence effects

Flow effect

Flow rate in the 20...90 l/h range: within the detection limit

Associated gas effect/cross sensitivity

Analyzer calibration should be based on an analysis of the sample gas. Selectivation measures to reduce associated gas effect: internal electronic cross-sensitivity correction or carrier gas correction for a sample component by other sample components measured with the Limas21 HW.

Temperature effect

Ambient temperature in permissible range,

Sample cell thermostat control to +82 °C

at zero point: ≤ 2 % of span per 10 °C

– on the sensitivity: ≤ 2 % of the measured value per 10 °C

Air pressure effect

- at the zero point: no effect
- On sensitivity with pressure correction using an integrated pressure sensor: ≤ 0.2 % of the measured value per 1 % of air pressure change
- The pressure sensor is routed to the outside via a hose.

Power supply effect

DC 24 V \pm 5 %: \leq 0.2 % of span

Dynamic response

Warm-up time

Approx. 4 hours

T₉₀ time

 $T_{90} \le 5$ sec for measurement cell length = 260 mm and sample gas flow = 60 l/h with non-linear filter (static/dynamic) = 15/1 sec. Low-pass time constant adjustable from 0...30 sec.

Calibration

Zero-point calibration

With inert gas, e.g. nitrogen, or with ambient air that is free of the sample component.

End-point calibration

With gas-filled calibration cells (optional) or with test gas. It is recommended to verify the calibration cell set values once a year.

During calibration of a multi-component analyzer, possible crosssensitivity and/or carrier gas corrections by internal or external measurement components are switched off. Therefore, corrected measurement components should be calibrated only using a test gas consisting of the measurement component and an inert gas like nitrogen.

Materials in contact with the sample medium

Sample cell

Tubing and window: silica glass, screw connection: PVDF, connectors: PTFE

Gas lines and connectors

Stainless steel 1.4305 (SAE 303), 1.4571 (SAE 316Ti)

Housing purge

Purge gas

Sample component-free air or nitrogen Purge gas flow rate $\leq 10 \text{ l/h}$

Sample gas inlet conditions

Sample gas composition

Sulfur-free exhaust gas of combustors, SO₂ concentration < 25 ppm, H_2O < 20 vol.%, filtered with pore width $\leq 0.5 \ \mu m$

Temperature

Sample gas dew point \leq 60 °C

Pressure

The analyzer module is operated under atmospheric pressure; the sample gas outlet is open to atmosphere.

Internal pressure drop < 5 hPa with standard flow rate 60 l/h. Permissible absolute pressure range: 800...1250 hPa. Operation under lower absolute pressure (e.g. at altitudes above 2000 m) on request. Overpressure in the sample cell max. 500 hPa.

Flow rate 20...90 l/h

Gas connections

See page 13

Notes

The analyzer module Limas21 HW can only be mounted in the 19 inch housing. SO_2 influences the NH_3 reading. If the sample gas mixture contains SO_2 , the requirement of internal corrections must be scrutinized. When ordering the average water vapor concentration has to be specified. The influence is corrected internally.

Sample conditioning system requirements

Sample gas feed-in

The various applications require the sample gas feed-in to the gas analyzer at temperatures of 150...190 °C. It is imperative to eliminate condensation and sublimation since NH₃ and NO₂ are easy soluble in water and can lead to salification. It is also imperative to prevent condensation of potentially present lowboiling hydrocarbons.

Sample gas inlet temperature (on the process side) $150...190\ ^{\circ}\mathrm{C}$

Sample gas filter

When measuring NO and NO2: sintered metal; when measuring NH3: ceramics; pore width $\leq 0.5~\mu m$

Materials in contact with the sample medium PTFE, PVDF or Silicosteel

Exhaust gas conditions

Outlet pressure = atmospheric pressure, no resistance in the gas outlet.

Installation note

Route the exhaust gas line declining to allow for condensate drain-off.

Process photometer analyzer modules Limas21 UV, Limas21 HW

Sample cells

	Standard cell	Quartz cell	Safety cell
Application	Standard applications	Corrosive gases	Corrosive, toxic and flammable gases
Wavelength range	20010000 nm	2004000 nm	CaF2 window: 20010000 nm SiO2 window: 2004000 nm
Resistance ¹⁾			
Suitable for measurement of	Non-corrosive gases	Corrosive gases, e.g. wet Cl ₂ , wet HCl, H ₂ SO ₄ , SO ₃ , ozone	Corrosive gases, e.g. dry HCl, dry COCl ₂ (< 50 ppm H ₂ O)
Not suitable for measurement of	Highly corrosive gases, e.g. gases containing chlorine, H₂SO4, SO₃, fluorine compounds	Fluorine compounds	Wet gases containing chlorine, H2SO4, SO3, fluorine compounds
Safety principle			
Toxic gases		Housing purge ($\leq 20 l/h$) with sample component-free air or with N ₂	
Corrosive gases	PTFE gas lines, housing purge (≤ 20 l/h) with sample component-free air or with N₂	Housing purge ($\leq 20 l/h$) with sample component-free air or with N ₂	Cell purge ²⁾ with N ₂ or with sample component-free air with excess pressure ³⁾ and flow monitoring
Flammable gases ⁴⁾	Stainless steel gas lines, housing purge (≤ 20 l/h) with N₂	Housing purge ($\leq 20 \text{ I/h}$) with N ₂	Cell purge $^{2)}$ with N ₂
Seal integrity	< 1 x 10 ⁻³ hPa l/s	< 1 x 10 ⁻⁶ hPa l/s	< 1 x 10 ⁻⁶ hPa l/s
Pressure rating			
Continuous	p _e < 500 hPa	pe < 500 hPa	p _e < 500 hPa
Spike	-	p _{abs} < 300 kPa	p _{abs} < 500 kPa
Sample cell material			
Cell tube	Aluminum	Silica glass (SiO2)	Stainless steel 1.4571 (SAE 316Ti)
Window	CaF2, adhesive fastening	Silica glass	CaF ₂ or SiO ₂ , screwed connection
Seal	-	FFKM75	FFKM70
Connectors	Stainless steel 1.4571 (SAE 316Ti)	PFA	Stainless steel 1.4571 (SAE 316Ti)
Gas line materials	FPM or PTFE	PFA	Stainless steel 1.4571 (SAE 316Ti)
Gas connector materials	Stainless steel 1.4571 (SAE 316Ti)	PFA	Stainless steel 1.4571 (SAE 316Ti)
Sample gas connection design (connection drawings see page 13)	Connectors with 1/8 NPT female threads	Pipes 6/4 mm	Pipes with 4 mm outer diameter

1) also see pages 9 and 11 'sample gas inlet conditions'

2) purge curtain

3) p_e = 7...20 hPa, 15...20 l/h

4) The analyzer module is suitable for measuring flammable gases and vapors under atmospheric conditions ($p_{abs} \le 1.1$ bar, oxygen content ≤ 21 vol.%). Temperature class: T4. The sample gas may not be explosive in standard operation; If the sample gas is explosive in the event of a sample gas supply failure, then only seldom and briefly (in accordance with Zone 2). Pressure in the sample gas path in normal operation $p_e \le 100$ hPa; in case of a sample gas supply failure the pressure must not exceed the maximum value $p_e = 500$ hPa. Before using the analyzer module, the corrosion resistance against the specific sample gas must be checked.

Gas connections

Limas21 UV: standard cell with FPM or PTFE hoses, quartz cell with FPM hoses, center connection cell made of aluminum or quartz

- 1 Sample gas inlet
- 3 Purge gas inlet housing 1)
- 4 Sample gas outlet
- 6 Purge gas outlet housing 1)
- 7 Pressure sensor²⁾
- 8 End-point gas inlet (with 3 solenoids) ^{1) 3)}
- ${\bf 9}\,$ Zero-point gas inlet (with 1 or 3 solenoids) $^{\rm 1)\,3)}$
- 1) Option
- 2) external connection, not for standard cell with
- FPM hoses 3) not for version with PTFE hoses

Limas21 UV: safety cell

- 1 Sample gas inlet
- 2 Sample gas outlet
- 3 Purge gas inlet housing¹⁾
- 4 Purge gas inlet sample cell
- 5 Purge gas outlet sample cell
- 6 Purge gas outlet housing 1)
- 7 Pressure sensor
- 1) Option

Limas21 UV: quartz cell with PFA tubes

- 1 Sample gas inlet
- 3 Purge gas inlet housing $^{\rm 1)}$
- 4 Sample gas outlet
- **6** Purge gas outlet housing $^{1)}$
- 7 Pressure sensor
- 1) Option

Limas21 HW

- 1 Sample gas inlet
- 3 Purge gas inlet housing
- 4 Sample gas outlet
- 6 Purge gas outlet housing
- 7 Pressure sensor

_

Oxygen analyzer module Magnos206

Measurement principle

Paramagnetic behavior of oxygen

Magnetomechanical oxygen analyzer

Sample component and measuring ranges

Sample component

Oxygen (O₂)

Smallest measurement range 0...0.5 vol.% O2

Measurement range quantity and limits

4 Measuring ranges

The measuring range limits are freely adjustable. At the factory, they are set to 0...10/15/25/100 vol.-% O_2 or in accordance with the order.

Largest measurement range

0...100 Vol.-% O₂. Measurement ranges within ignition limits cannot be provided.

Measurement ranges with suppressed zero-point

Measuring range suppression max. 1:100, e.g. 99...100 vol. % O₂ Highly suppressed measurement ranges (\ge 95...100 vol.% O₂) and initial measuring ranges in the same analyzer should be avoided. Pressure correction by means of pressure sensor required.

Stability

Linearity deviation

≤ 0.5 % of span, minimum 0.005 vol.% O₂

Repeatability

 \leq 50 ppm O₂ (time base for gas exchange \geq 5 minutes)

Zero point drift

 \leq 3 % of span of the smallest measurement range (per order) per week, minimum 300 ppm O₂ per week; following prolonged transport and storage time the drift can be higher during the first weeks of operation.

Span drift

 \leq 0.1 vol.% O₂ per week or \leq 1 % of measured value per week (not cumulative), whichever is smaller;

 ≤ 0.25 % of measured value per year, minimum 0.05 vol.% O_2 per year

Output fluctuation (2 σ)

 \leq 25 ppm O₂ at electronic T₉₀ time (static/dynamic) = 3/0 sec

Detection limit (4 σ)

 $\leq 50 \; ppm \; O_2$ at electronic T_{90} time (static/dynamic) = 3/0 sec

Influence effects

Flow effect

 ≤ 0.1 vol.% O₂ in permissible range

Associated gas effect

Data regarding the effect of associated gases can be found in IEC 61207-3: 2002 'Gas analyzers – Expression of performance – Part 3: Paramagnetic oxygen analyzers'.

Temperature effect

Ambient temperature in permissible range

- − at zero point: \leq 0.02 vol.% O₂ per 10 °C
- on sensitivity: ≤ 0.3 vol.% O₂ per 10 °C
- Thermostat temperature = 64 °C

Air pressure effect

- On sensitivity without pressure correction
- 1 % of the measured value per 1 % of air pressure change
 On sensitivity with pressure correction using integrated
- pressure sensor (option): $\leq 0.1 \%$ of measured value per 1 % air pressure change; for highly suppressed measurement ranges $\leq 0.01 \%$ of measured value per 1 % air pressure change or ≤ 0.002 vol.% O₂ per 1 % air pressure change, whichever is greater.

Power supply effect

DC 24 V ±5 %: ≤ 0.4 % of span

Position effect

Zero-point shift ≤ 0.05 vol.% O₂ per 1° deviation from horizontal location. Position has no effect on the hard-mounted unit.

Dynamic response

Warm-up time

< 1 hour

T₉₀ time

 $T_{90} \le 3.5...10$ sec at a sample gas flow of 90 l/h and electronic T_{90} time (static/dynamic) = 3/0 sec, gas change from nitrogen to air (applies to an analyzer unit with 1 analyzer module)

Calibration

Zero-point calibration

With oxygen-free process gas or substitute gas

End-point calibration

With process gas with a known oxygen concentration or a substitute gas such as dried air

Single-point calibration

for measuring ranges from 0...5 vol.-% O_2 to 0...25 vol. % O_2 Zero-point calibration with any oxygen concentration, e.g. with nitrogen or ambient air, processed through a cooler or H_2O absorber.

Pressure correction by means of pressure sensor is recommended for single-point calibration with air. Depending on the measurement task involved, the zero- and endpoints should be verified periodically (Recommendation: once a year).

Calibration of measurement ranges with suppressed zero-point

Highly suppressed measurement ranges ($\geq 95...100$ vol.% O₂) should only be calibrated with test gases having concentrations in the selected measuring range.

Single-point calibration can also be done within a suppressed measurement range. The O_2 concentration of the test gas must lie within the measurement range.

Materials in contact with the sample medium

Analyzer

Stainless steel 1.4305, glass, platinum, rhodium, epoxy resin; Gaskets: FPM, optional: FFKM75

Sample gas inlet conditions

Temperature

+5...+50 °C

The sample gas dew point should be at least 5 °C below the ambient temperature throughout the sample gas path. Otherwise, a sample gas cooler or condensate trap is required. Water vapor content variations cause volume errors.

Pressure

Operation under atmospheric pressure: the sample gas outlet is open to atmosphere. Internal pressure drop < 5 hPa with standard flow rate 60 l/h. Permissible absolute pressure range: 800...1250 hPa. Operation under lower absolute pressure (e.g. at altitudes above 2000 m) on request.

Operation under elevated pressure: a pressure sensor is required for pressure influence compensation. Absolute pressure ≤ 1250 hPa: an optional internal pressure sensor can be connected to the sample gas path. Absolute pressure ≥ 1250 hPa: an external pressure sensor must be connected to the sample gas path. The analyzer module is function-tested for 5000 hPa internal pressure without damage.

Flow rate

30...90 l/h

Changes in the sample gas flow rate should be avoided when using highly suppressed measuring ranges.

Corrosive gases

Consultation with ABB Analytical is required if the sample gas contains Cl_2 , HCl, HF or other corrosive components. If the sample gas contains NH_3 , FFKM75 gaskets must be used; in this case, the pneumatic module cannot be connected to the analyzer module. The pressure sensor must not be connected to the sample gas path.

Flammable gases

The analyzer module is suitable for measuring flammable gases and vapors under atmospheric conditions ($p_{abs} \le 1.1$ bar, oxygen content ≤ 21 vol.%). Temperature class: T4. If the sample gas is explosive in the event of a sample gas supply failure, then only seldom and briefly (in accordance with zone 2). Pressure in the sample gas path in normal operation $p_e \le 100$ hPa; in case of a sample gas supply failure the pressure must not exceed the maximum value $p_e = 500$ hPa.

Before using the analyzer module, the corrosion resistance against the specific sample gas must be checked. Housing purge with nitrogen should be provided when measuring flammable gases and vapors. Flame barriers can be used as an

option (except for the 'safety concept' version, see page 36). Pressure drop at the flame barriers approx. 40 hPa for a sample gas flow rate of 50 l/h. Material of the flame barriers: stainless steel 1.4571. The pressure sensor must not be connected to the sample gas path.

Version in category 3G see page 36

Gas connections

The sample cell is connected directly to the gas ports.

- 1 Sample gas inlet
- 2 Sample gas outlet
- **3** Purge gas inlet analyzer²⁾
- **4** Purge gas outlet analyzer²⁾
- 7 Purge gas inlet housing ¹⁾
- 8 Purge gas outlet housing ¹⁾ (also with flow sensor)
- ${\bf 9}~$ Pressure sensor 1 $^{\rm 1)}$
- **10** Pressure sensor 2¹⁾
- Pneumatics module ¹⁾:
- 11 Sample gas inlet
- 12 End point gas inlet (with 3 solenoids)
- 13 Test Gas/Zero-Point Gas Inlet (with 1 or 3 solenoid valves)
- 14 Sample gas outlet to be connected to sample gas inlet 1
- 1) Option
- 2) not in version with performance test for emission monitoring

_

Oxygen analyzer module Magnos28

Measurement principle

Paramagnetic behavior of oxygen

Magnetomechanical oxygen analyzer

Sample component and measuring ranges

Sample component

Oxygen (O₂)

Smallest measurement range

0...0.5 vol.% O₂

Measurement range quantity and limits

4 Measuring ranges

The measuring range limits are freely adjustable. At the factory, they are set to 0...10/15/25/100 vol.% O₂ or in accordance with the order.

Largest measurement range

0...100 vol.% O2

Measuring ranges within ignition limits cannot be provided.

Measurement ranges with suppressed zero-point

Measuring range suppression max. 1:200, e.g. 99.5...100 vol.% O₂ Pressure correction by means of pressure sensor required. The pressure sensor is equipped by the manufacturer when the analyzer has been ordered with a suppressed measurement range.

Stability

The following data only applies if all the influence variables (e.g. flow, temperature and air pressure) are constant.

Linearity deviation

 \leq 0.5 % of the span or 0.005 vol.% O₂ the greater value applies

Repeatability

≤ 50 ppm O₂

Zero point drift

 \leq 3 % of span of the smallest measuring range (in accordance with order) per week, or 0.03 vol.% O₂ per week, whichever value is greater

The value may be elevated during first commissioning or after a longer service life.

Span drift

 ≤ 0.1 vol.% O₂ per week or ≤ 1 % of measured value per week (not cumulative), whichever is smaller; ≤ 0.15 % of measured value per three months, minimum 0.03 vol.% O₂ per three months, whichever is greater

Output fluctuation (2 σ)

 $\leq 25 \text{ ppm O}_2$ at electronic T_{90} time (static/dynamic) = 3/0 sec

Detection limit (4 σ)

 \leq 50 ppm O₂ at electronic T₉₀ time (static/dynamic) = 3/0 sec

Influence effects

Flow effect

Sample gas $N_{2:} \le 0.1$ vol.% O_2 in permissible flow rate range; Sample gas air: ≤ 0.1 vol.% O_2 at a flow rate change of 10 l/h

Associated gas effect

Data regarding the effect of associated gases can be found in IEC 61207-3: 2002 'Gas analyzers – Expression of performance – Part 3: Paramagnetic oxygen analyzers'.

Temperature effect

Average temperature effect in permissible ambient temperature range:

- at zero point: ≤ 0.02 vol.% O₂ per 10 °C
- on sensitivity: ≤ 0.3 % of the measured value
- For highly suppressed measuring ranges (when factory configured): ≤ 0.01 Vol. % / 10 °C in the same measuring range

For highly suppressed measuring ranges ($\ge 99...100$ Vol. % O₂) and very small measuring ranges ($\le 0...1$ Vol. % O₂) greater temperature fluctuations (≥ 5 °C) at the installation site should be avoided.

Thermostat temperature = 60 °C

Air pressure effect

- on sensitivity without pressure correction:
- ≤ 1 % of the measured value per 1 % of air pressure change
 On sensitivity with pressure correction using integrated

pressure sensor (option): ≤ 0.1 % of measured value per 1 % air pressure change; for highly suppressed measuring ranges ≤ 0.01 % of measured value per 1 % air pressure change or ≤ 0.002 vol.% O₂ per 1 % air pressure change, whichever is greater.

Power supply effect

DC 24 V ±5 %: within detection limit

Position effect

Zero-point shift ≤ 0.05 vol.% O₂ per 1° deviation from horizontal location. Position has no effect on the hard-mounted unit.

Dynamic response

Warm-up time

< 5 hours

The value may be elevated during first commissioning or after a longer service life.

T₉₀ time

 $T_{90} \le 3$ sec at a sample gas flow = 90 l/h and electronic T_{90} time (static/dynamic) = 3/0 sec, gas change from nitrogen to air (applies to an analyzer unit with 1 analyzer module)

Calibration

Zero-point calibration

With oxygen-free process gas or substitute gas

End-point calibration

With process gas with a known oxygen concentration or a substitute gas such as dried air

Single-point calibration

for measuring ranges from 0...5 vol.-% O_2 to 0...25 vol. % O_2 Zero-point calibration with any oxygen concentration, e.g. with nitrogen or ambient air, processed through a cooler or H_2O absorber. Pressure correction by means of pressure sensor is recommended for single-point calibration with air. Depending on the measurement task involved, the zero- and endpoints should be verified periodically (Recommendation: once a year).

Calibration of measurement ranges with suppressed zero-point

Highly suppressed measuring ranges ($\geq 95...100$ Vol. % O₂) should be calibrated for the best possible accuracy with N₂ for the zero point and 100% O₂ for the end point. Single-point calibration can also be done within a suppressed measurement range. The O₂ concentration of the test gas must lie within the measurement range.

Materials in contact with the sample medium

Analyzer

Stainless steel 1.4305, nickel alloy, glass, PtNi, silicon, gold, PTFE; FPM gaskets, optional: FFKM75

Sample gas inlet conditions

The analyzer module must not be used for measurement of ignitable gas/air or gas/oxygen mixtures.

Temperature

+5...+50 °C

The sample gas dew point should be at least 5 °C below the ambient temperature throughout the sample gas path. Otherwise, a sample gas cooler or condensate trap is required. Water vapor content variations cause volume errors.

Pressure

Operation under atmospheric pressure: the sample gas outlet is open to atmosphere. Internal pressure drop < 5 hPa with standard flow rate 60 l/h. Permissible absolute pressure range: 800...1600 hPa. Operation under lower absolute pressure (e.g. at altitudes above 2000 m) on request.

Operation under elevated pressure: a pressure sensor is required for pressure influence compensation. Absolute pressure ≤ 1250 hPa: an optional internal pressure sensor can be connected to the sample gas path. Absolute pressure ≥ 1250 hPa: an external pressure sensor must be connected to the sample gas path.

Flow rate

30...90 l/h

Changes in the sample gas flow rate should be avoided when using highly suppressed measuring ranges.

Corrosive gases

Consultation with ABB Analytical is required if the sample gas contains Cl_2 , HCl, HF or other corrosive components. If the sample gas contains NH_3 , FFKM75 gaskets must be used; in this case, the pneumatic module cannot be connected to the analyzer module. The pressure sensor must not be connected to the sample gas path.

Flammable gases

The analyzer module is suited for the measurement of flammable gases and vapors up to a sample gas pressure of 1.2 bar (absolute) in GP and Zone 2 environments.

For use in Zone 2, suitability is limited to measuring media under atmospheric conditions ($p_{abs} \le 1.1$ bar, oxygen content ≤ 21 Vol. %). Temperature class: T4. If the sample gas is explosive in the event of a sample gas supply failure, then only seldom and briefly (in accordance with zone 2). Pressure in the sample gas path in normal operation $p_e \le 100$ hPa; in case of a sample gas supply failure the pressure must not exceed the maximum value $p_e = 500$ hPa.

Before using the analyzer module, the corrosion resistance against the specific sample gas must be checked. Housing purge with nitrogen should be provided when measuring flammable gases and vapors. Flame barriers can be used as an option. Pressure drop at the flame barriers approx. 40 hPa for a sample gas flow rate of 50 l/h. Material of the flame barriers: stainless steel 1.4571. The pressure sensor must not be connected to the sample gas path.

Gas connections

The sample cell is connected directly to the gas ports.

- 1 Sample gas inlet
- 2 Sample gas outlet
- **3** Purge gas inlet analyzer²⁾
- 4 Purge gas outlet analyzer²⁾
- 7 Purge gas inlet housing¹⁾
- 8 Purge gas outlet housing¹⁾ (also with flow sensor)
- 9 Pressure sensor 1¹⁾
- Pressure sensor 2¹⁾
 Pneumatics module¹⁾:
- 11 Sample gas inlet
- 12 End point gas inlet (with 3 solenoids)
- 13 Test Gas/Zero-Point Gas Inlet (with 1 or 3 solenoid valves)
- 14 Sample gas outlet to be connected to sample gas inlet 1
- 1) Option
- 2) not in version with performance test for emission monitoring

Oxygen analyzer module Magnos27

Measurement principle

Paramagnetic behavior of oxygen

Heavy-duty thermomagnetic analyzer

Sample component and measuring ranges

Sample component Oxygen (O₂) in flue gas or in nitrogen (N₂)

Smallest measurement range 0...3 Vol.-% O₂

Measurement range quantity and limits 1...4 measuring ranges Ranges are factory-set in accordance with order.

Largest measurement range

 $0...100 \mbox{ vol.% } O_2$ Measuring ranges within ignition limits cannot be provided.

Stability

Linearity deviation

≤ 2 % of span

Repeatability ≤ 1 % of span

Zero point drift

≤ 1 % of span per week

Span drift

 \leq 2 % of measured value per week

Output fluctuation (2 σ) \leq 0.5 % of smallest measurement range span at electronic

 T_{90} time = 0 sec

Detection limit (4 σ)

 \leq 1 % of smallest measurement range span at electronic T_{90} time = 0 sec

Influence effects

Flow effect

 \leq 1 % of span at a flow change of ±10 l/h. At an identical flow rate for test and sample gases, the flow rate effect is automatically compensated.

Associated gas effect

Magnos27 calibration applies only to the sample gas shown on the identification plate (= sample component + associated gas).

Temperature effect

- Ambient temperature in permissible range
- at zero point: ≤ 2 % of span per 10 °C
- -~ on the sensitivity: $\leq 0.5~\%$ of the measured value per 10 °C based on temperature at the time of calibration
- Thermostat temperature = 63 °C

Air pressure effect

- at zero point: < 0.05 vol.% O_2 per 1 % air pressure change - on sensitivity without pressure correction:
- ≤ 1.5 % of the measured value per 1 % of air pressure change
 on sensitivity without pressure correction (option):
- \leq 0.25 % of the measured value per 1 % of air pressure change Option: calibration for operating altitude over 2000 m

Power supply effect

DC 24 V ±5 %: ≤ 0.2 % of span

Position effect

Approx. 3 % of smallest measurement range span per 1° deviation from horizontal orientation. Position has no effect on the hard-mounted unit.

Dynamic response

Warm-up time

2...4 hours

T₉₀ time

 T_{90} = 10 to 22 sec, depending on sample gas flow and on measurement cell connection (see 'Gas connections', applies to an analyzer unit with 1 analyzer module)

Calibration

Zero-point calibration

With oxygen-free process gas or substitute gas

End-point calibration

With process gas having a known oxygen concentration or with substitute gas

Materials in contact with the sample medium

Analyzer

Stainless steel 1.4580 (SAE 316Cb) and 1.4305 (SAE 303), glass

Gas lines and connectors

Stainless steel 1.4571 (SAE 316Ti) and 1.4305 (SAE 303), PVC-C, FPM $\,$

Sample gas inlet conditions

Temperature

+5...+50 °C

The sample gas dew point should be at least 5 °C below the ambient temperature throughout the sample gas path. Otherwise, a sample gas cooler or condensate trap is required. Water vapor content variations cause volume errors.

Pressure

The analyzer module is operated under atmospheric pressure; the sample gas outlet is open to atmosphere.

Internal pressure drop < 5 hPa with standard flow rate 60 l/h. Permissible absolute pressure range: 800...1250 hPa. Operation under lower absolute pressure (e.g. at altitudes above 2000 m) on request. Overpressure in the sample chamber max. 100 hPa.

Flow rate

20...90 l/h

Flammable gases

Measurement of flammable gases is not possible.

Gas connections

Sample cell connection by means of FPM hoses

Sample cell direct connection

The sample cell is connected directly to the gas ports (for wall-mount housing only). Application e.g. when external gas supply is connected and for short T_{90} times.

- 1 Purge gas inlet housing¹⁾
- 2 Purge gas outlet housing 1) (also with flow sensor)
- 3 -
- 4 Sample gas inlet
- 5 Purge gas inlet analyzer
- 6 Purge gas outlet analyzer
- 7 Sample gas outlet
- 8 -
- 9 Pressure sensor 1 $^{1)}$
- 10 Pressure sensor 2¹⁾
 - Pneumatics module²⁾:
- 11 Sample gas inlet
- 12 End point gas inlet (with 3 solenoids)
- 13 Test Gas/Zero-Point Gas Inlet (with 1 or 3 solenoid valves)
- 14 Sample gas outlet to be connected to sample gas inlet 4
- 1) Option
- 2) Option not in version with sample cell direct connection

Trace oxygen analyzer module ZO23

Measurement principle

Potentiometric measurement; zirconium dioxide cell for determination of the oxygen concentration in accordance with Nernst's equation; reference gas: ambient air.

The analyzer module is used for the continuous measurement of oxygen in pure gases (N_2 , CO_2 , Ar). The measuring cell is catalytically inactivated to the extent that flammable carrier components in stoichiometric concentrations only negligibly reduce the oxygen value.

Sample component and measuring ranges

Sample component Oxygen (O₂)

Measuring range quantity and measuring range limits

4 Measuring ranges

The limits of the measuring ranges are freely adjustable within the range 0...1 ppm to 0...250,000 ppm O_2 ; they are factory-set to 0...1/10/100/1000 ppm O_2 . The following measurement data refer to a span of 100 ppm O_2 with a regulated flow rate of 8 ±0.2 l/h.

Stability

Linearity

Owing to the measurement principle, zirconium dioxide cells are base linear.

Repeatability

< 1 % of the measurement range or 100 ppb O_2 (whichever is greater)

Zero point drift

The zero point (reference point) is displayed if ambient air is present on the sample gas side. The value for air of 20.6 vol.% O_2 (for 25 °C and 50 % relative humidity) may deviate through aging of the cell.

< 1 % of the measurement range per week or 250 ppb O₂ (whichever is greater)

Span drift

Depends on possible interfering components (catalyst poisons) in the sample gas and the aging of the cell. For pure gas measurements in N₂, CO₂ and Ar: < 1 % of the

measuring range per week or 250 ppb O_2 (whichever is greater)

Output fluctuation (2 σ)

< ± 0.5 % of the measured value or 50 ppb O₂ (whichever is greater)

Detection limit (4 σ)

< ± 1 % of the measured value or 100 ppb O₂ (whichever is greater)

Influence effects

Flow effect

 \leq 300 ppbv O₂ in the permissible range

Associated gas effect

Inert gases (Ar, CO_2 , N_2) have no effect. Flammable gases (CO, H_2 , CH₄) in stoichiometric concentrations to the oxygen content: conversion $O_2 < 20$ % of the stoichiometric conversion. If higher concentrations of flammable gases are present, higher O_2 conversions must be expected. The concentration of flammable gases in the sample gas must not exceed 100 ppm.

Temperature effect

The effect of the ambient temperature in the permissible range of +5...+45 °C is < 2 % of the measured value or 50 ppb O₂ per 10 °C change in the ambient temperature (whichever is greater).

Air pressure effect

No effect through a change in air pressure; sample gas must flow out of the outlet without backpressure.

Power supply effect

DC 24 V ±5 %: no effect

Position effect

No position effect for permanently installed instruments

Dynamic response

Warm-up time

The operating temperature of the cell is reached after approx. 15 minutes. Offset calibration with reference gas (ambient air) after 2 hours flow. The measurement is ready-to-run after valves and lines have been purged with sample gas. Typical purging time for valves and lines: approx. 2...5 h.

T₉₀ time

 T_{90} < 60 sec for the alternation of 2 test gases in the measuring range 10 ppm with a sample gas flow rate = 8 l/h and electronic $T_{90}\text{-time}$ = 3 sec

Calibration

Offset calibration

The reference value for ambient air is calibrated at 20.6 vol.% $O_{\rm 2}$ by means of ambient air on the sample gas side.

End-point calibration

by means of test gas O_2 in N_2 (or in CO_2 or Ar); O_2 concentration in the measuring range, e.g. 10 ppm O_2

Function test

Extended response time or reduced sensitivity are dimensions for the correct functioning of the measuring cell. The function test can be carried out without any additional test gases by feeding the sample gas with constant concentration. Based on the progression of the test, it can be assessed whether the reaction time of the sensor lies within a specified tolerance. The function test is started manually and lasts approx. 15 minutes. Additional function block configuration is required for the cyclic scan.

Materials in contact with the sample medium

Analyzer

Zirconium dioxide cell: ZrO₂, electrodes containing platinum; dust filter (option): PP; flow sensor (option): on semiconductor basis, nickel-plated brass

Gas lines and connectors

Stainless steel 1.4571, FPM and silicon hoses in the gas outlet; gas connections: stainless steel 1.4401/1.4305-

Sample gas inlet conditions

The analyzer module must not be used for measurement of ignitable gas/air or gas/oxygen mixtures.

Temperature

+5...+50 °C

Inlet pressure

pe = ≤ 70 hPa

Outlet pressure Atmospheric pressure

Flow rate

4...20 l/h. Use a metering valve to set the flow rate.

Corrosive gases

The presence of corrosive gases and catalyst poisons, e.g. halogens, gases containing sulfur and heavy-metal dust, leads to faster aging and/or destruction of the ZrO_2 cell.

Flammable gases

The analyzer module is suitable for measuring flammable gases in a non-explosive environment. The concentration of flammable gases in the sample gas must not exceed 100 ppm.

Purge gas

If case purging is selected, purging may only be carried out with air (not with nitrogen), since the ambient air is used as a reference gas.

Note

The trace oxygen analyzer module cannot be connected to the pneumatics module.

Gas connections

The measuring chamber is connected to the sample gas inlet connection via a stainless steel tube (inlet side) and to the sample gas outlet connection via a FPM hose (outlet side).

- 1 Sample gas inlet 3 mm Swagelok®
- 2 Sample gas outlet 1/8 NPT internal thread
- 7 Purge gas inlet housing (only for IP54 version)
- 8 Purge gas outlet housing (only for IP54 version)

Thermal conductivity analyzer module Caldos25

Measurement principle

Difference in thermal conductivity of various gases

Highly corrosion-resistant thermal conductivity analyzer, sample cells embedded in glass

Sample components and measurement ranges

The Caldos25 is specifically designed for measurements of corrosive gas components.

Sample components and smallest measurement ranges (examples)

Sample component and associated gas	Smallest range	Reference gas
H_2 in N_2 or air	00.5 vol.%	Air (sealed)
SO2 in N2 or air	01.5 vol.%	Air (sealed)
H_2 in Cl_2	00.5 vol.%	Flowing

Measurement range quantity and limits

1...4 measuring ranges per sample component Measuring ranges are factory-set in accordance with the order.

Largest measurement range

0...100 vol.% or 0 vol.%...saturation Measuring ranges within ignition limits cannot be provided.

Measurement range switching ratio

≤ 1:20

Measurement ranges with suppressed zero-point Span at least 2 vol.%, depending on application

Stability

Linearity deviation

≤ 2 % of span

Repeatability ≤ 1 % of span

Zero point drift

 \leq 1 % of span per week

Span drift

 \leq 1 % of measured value per week

Output fluctuation (2 σ)

 ≤ 0.5 % of smallest measurement range span at electronic T_{90} time = 0 sec

Detection limit (4 σ)

 \leq 1 % of smallest measurement range span at electronic T_{90} time = 0 sec

Influence effects

Flow effect

 \leq 1...5 % of span at a flow change of ±10 l/h. At an identical flow rate for test and sample gases, the flow rate effect is automatically compensated.

Associated gas effect

Analyzer calibration should be based on an analysis of the sample gas. Measurement results can be greatly distorted by interfering components in complex (non-binary) gas mixtures.

Temperature effect

Ambient temperature in the permissible range in any point of the measuring range: ≤ 1 % of span per 10 °C, based on the temperature at the time of calibration Thermostat temperature = 60 °C

Air pressure effect

No effect in permissible operating condition range

Power supply effect

DC 24 V ±5 %: \leq 0.2 % of span

Position effect

< 1 % of span up to 10° deviation from horizontal orientation

Dynamic response

Warm-up time

1.5 hours

T₉₀ time

 T_{90} typical = 10...20 sec; optional: $T_{90} < 6$ sec (applies to an analyzer unit with 1 analyzer module)

Calibration

Zero-point calibration

With sample component-free process gas or substitute gas

End-point calibration

With process gas having a known sample gas concentration or with substitute gas

Materials in contact with the sample medium

Analyzer

Stainless steel 1.4305 (SAE 303), glass

Gas lines and connectors

for sealed reference gas: stainless steel 1.4305; for flowing reference gas: PVC-C, gaskets from FPM; for corrosive sample gas: PVC-C, gaskets from FPM; contains the sample gas NH₃, therefore gaskets from FFKM are used.

Sample gas inlet conditions

Temperature

+5...+50 °C

The sample gas dew point should be at least 5 °C below the ambient temperature throughout the sample gas path. Otherwise, a sample gas cooler or condensate trap is required. Water vapor content variations cause volume errors.

Pressure

The analyzer module is operated under atmospheric pressure; the sample gas outlet is open to atmosphere.

Internal pressure drop < 5 hPa with standard flow rate 60 l/h. Permissible absolute pressure range: 800...1250 hPa. Operation under lower absolute pressure (e.g. at altitudes above 2000 m) on request. Overpressure in the sample chamber max. 100 hPa.

Flow rate

standard 10...90 l/h, max. 90...200 l/h for option T_{90} < 6 sec

Flowing reference gas

Gas inlet conditions same as sample gas

Flammable gases

The analyzer module is suitable for measuring flammable gases and vapors under atmospheric conditions ($p_{abs} \le 1.1$ bar, oxygen content ≤ 21 vol.%). Temperature class: T4. If the sample gas is explosive in the event of a sample gas supply failure, then only seldom and briefly (in accordance with zone 2). Pressure in the sample gas path in normal operation $p_e \le 100$ hPa; in case of a sample gas supply failure the pressure must not exceed the maximum value $p_e = 500$ hPa.

Before using the analyzer module, the corrosion resistance against the specific sample gas must be checked. Housing purge with nitrogen should be provided when measuring flammable gases and vapors. Flame barriers can be used as an option (except for the 'safety concept' version, see page 36). Pressure drop at the flame barriers approx. 40 hPa for a sample gas flow rate of 50 l/h. Material of the flame barriers: stainless steel 1.4571.

Version in category 3G see page 36

Gas connections

Standard version

The sample cell is connected directly to the gas ports.

Versions for corrosive sample gas or flowing reference gas

The sample cell is connected directly to the gas ports.

The gas connections 1-6 in the

gas are made of PVC-C. Do not

use metal tubing connectors or

versions for corrosive sample

gas or for flowing reference

] adapters!

- 1 Sample gas inlet
- 2 Sample gas outlet
- 3 Purge gas inlet analyzer
- 4 Purge gas outlet analyzer
- 5 Reference gas inlet²⁾
- 6 Reference gas outlet²⁾
- 7 Purge gas inlet housing¹⁾
- 8 Purge gas outlet housing ¹⁾ (also with flow sensor)
- 9 Pressure sensor 1¹⁾
- 10 Pressure sensor 2¹⁾

Pneumatics module ^{1) 2)}:

- 11 Sample gas inlet
- 12 End point gas inlet (with 3 solenoids)
- 13 Test Gas/Zero-Point Gas Inlet (with 1 or 3 solenoid valves)
- 14 Sample gas outlet to be connected to sample gas inlet 1

1) Option

2) Not in version for corrosive sample gas

Thermal conductivity analyzer module Caldos27

Measurement principle

Difference in thermal conductivity of various gases Micromechanical silicon sensor with especially short $T_{\rm 90}$ time

Sample components and measurement ranges

Sample components and smallest possible measurement ranges (examples)

Sample	Measuring ranges			Standard gas ¹⁾
component and associated gas	class 1	class 2		for calibration
Ar in O ₂	020	02	vol.%	Air, N ₂ , O ₂
H₂ in Ar	02.5	00.25	vol.%	Air, N₂, Ar
H2 in N2 or air	03	00.3	vol.%	Air, N2
H₂ in stack gas	05	00.5	vol.%	Air, N2
CH4 in N2	020	02	vol.%	Air, N2
CH₄ in air	04	02	vol.%	Air, N2
CO_2 in N_2 or air	030	03	vol.%	Air, N2
Ar in N₂	7510	97.510	vol.%	Air, N₂, Ar
	0	0		
H_2 in N_2	9010 0	97100	vol.%	N ₂ , H ₂
		99100 2)	vol.%	N2, H2
CH₄ in N₂	9010 0	99100	vol.%	N2, CH4
He in N ₂	9010 0	97100	vol.%	He

1) Only for measurement ranges \geq class 1

2) Daily zero-point check required

Sample components and measurement ranges for monitoring hydrogen-cooled turbo generators

Sample component and associated gas	d associated gas Measurement	
	range	
CO₂ in air	0100 vol.%	
H ₂ in CO ₂	1000 vol.%	
H2 in air	10080/90 vol.%	

Other sample components on request.

Measurement range quantity and limits

1...4 measuring ranges per sample component Range limits are freely adjustable. They are factory-calibrated for the largest possible measurement range.

Largest measurement range

0...100 vol.% or 0 vol.%...saturation, depending on measurement task. Measurement ranges within ignition limits cannot be provided.

Measurement range switching ratio ≤ 1:20

2 1.20

Measurement ranges with suppressed zero-point See the table above for spans

Stability

These data apply only to measurement ranges \geq class 2.

Linearity deviation ≤ 2 % of span

Repeatability

 \leq 1 % of span

Zero point drift

 \leq 2 % of smallest possible measurement range per week

Span drift

 \leq 0.5 % of the smallest feasible measuring range per week

Output fluctuation (2 σ)

 ≤ 0.5 % of smallest measurement range span at electronic T_{90} time = 0 sec

Detection limit (4 σ)

 \leq 1 % of smallest measurement range span at electronic T_{90} time = 0 sec

Influence effects

Flow effect

 \leq 0.5 % of span at a flow change of ±10 l/h. At an identical flow rate for test and sample gases, the flow rate effect is automatically compensated.

Associated gas effect

Analyzer calibration should be based on an analysis of the sample gas.

Temperature effect

Ambient temperature in the permissible range in any point of the measuring range: ≤ 0.5 % of span per 10 °C, based on the temperature at the time of calibration Thermostat temperature = 60 °C

Air pressure effect

 \leq 0.25 % of span per 10 hPa for the smallest possible ranges given; for larger spans, the effect is correspondingly lower. Option: calibration for operating altitude over 2000 m

Power supply effect

DC 24 V \pm 5 %: \leq 0.2 % of span

Position effect

< 1 % of span up to 30° deviation from horizontal orientation

Dynamic response

Warm-up time

Approx. 30/60 minutes for class 1/2 measurement ranges

T₉₀ time

 $T_{90} \le 2$ sec for direct sample cell connection and sample gas flow of 60 l/h (applies to an analyzer unit with 1 analyzer module)

Calibration

Zero-point calibration

With test gas, measurement component-free process gas or substitute gas

End-point calibration

With test gas, process gas having a known sample gas concentration or substitute gas

Simplified calibration with standard gas

For measurement ranges \geq class 1, a single-point calibration can be performed with standard gas, since the zero- and end-points will not drift independently due to the sensor principle employed. This technique leaves out safety- related measurements. Depending on the measurement task involved, the zero- and endpoints should be verified periodically (Recommendation: once a year).

Materials in contact with the sample medium

Analyzer

Measurement chamber: stainless steel 1.4305; sensor: gold, silicon oxi-nitride; gasket: FFKM75

Sample gas inlet conditions

Temperature

+5...+50 °C

The sample gas dew point should be at least 5 °C below the ambient temperature throughout the sample gas path. Otherwise, a sample gas cooler or condensate trap is required. Water vapor content variations cause volume errors.

Pressure

The analyzer module is operated under atmospheric pressure; the sample gas outlet is open to atmosphere.

Internal pressure drop < 5 hPa with standard flow rate 60 l/h. Permissible absolute pressure range: 800...1250 hPa. Operation under lower absolute pressure (e.g. at altitudes above 2000 m) on request. Overpressure in the sample chamber max. 100 hPa.

Flow rate

standard 10...90 l/h, min. 1 l/h

Corrosive gases

Consultation with ABB Analytical is required if the sample gas contains Cl_2 , HCl, HF, SO_2 , NH_3 , H_2S or other corrosive components.

If the sample gas contains NH_3 , FPM hoses may not be used; FFKM hoses must be used instead. In this case, the pneumatics module cannot be connected to the analyzer module.

Flammable gases

The analyzer module is suitable for measuring flammable gases and vapors under atmospheric conditions ($p_{abs} \le 1.1$ bar, oxygen content ≤ 21 vol.%). Temperature class: T4. If the sample gas is explosive in the event of a sample gas supply failure, then only seldom and briefly (in accordance with zone 2). Pressure in the sample gas path in normal operation $p_e \le 100$ hPa; in case of a sample gas supply failure the pressure must not exceed the maximum value $p_e = 500$ hPa.

Before using the analyzer module, the corrosion resistance against the specific sample gas must be checked.

Housing purge with nitrogen should be provided when measuring flammable gases and vapors. Flame barriers can be used as an option (except for the 'safety concept' version, see page 36). Pressure drop at the flame barriers approx. 40 hPa for a sample gas flow rate of 50 l/h. Material of the flame barriers: stainless steel 1.4571.

Version in category 3G see page 36

Gas connections

The sample cell is connected directly to the gas ports.

- 1 Sample gas inlet
- 2 Sample gas outlet
- 3 Purge gas inlet analyzer
- 4 Purge gas outlet analyzer
- 7 Purge gas inlet housing 1)
- 8 Purge gas outlet housing ¹⁾ (also with flow sensor)
- 9 Pressure sensor 1
- **10** Pressure sensor 2 Pneumatics module¹⁾:
- 11 Sample gas inlet
- **12** End point gas inlet (with 3 solenoids)
- 13 Test Gas/Zero-Point Gas Inlet (with 1 or 3 solenoid valves)
- 14 Sample gas outlet to be connected to sample gas inlet 1
- 1) Option

-

FID analyzer module Fidas24

Measurement principle

Flame-ionization detector

The analyzer module complies with the requirements for measuring instruments with flame ionization detection according to EN 12619.

Sample components and measurement ranges

Sample components

Hydrocarbons. The concentration of the gas components in the sample gas path must not exceed the temperature-dependent LEL. The analyzer temperature is 180 $^{\circ}$ C.

Number of sample components

4 sample components

Smallest measurement range

0...5 to 0...1500 mg org. C/m³ or 0...10 to 0...3000 ppm C1

Largest measurement range

0...80 g org. C/m³ or 0...15 vol.% C1 Larger measuring ranges on request.

Measurement range quantity and limits

1...4 measuring ranges

Measuring ranges are factory-set in accordance with order. Smallest to largest measuring range ratio 1:300...1:1500, depending on the configuration.

Stability

The following data only applies if all the influence variables (e.g. flow, temperature and air pressure) are constant. They apply to measurement ranges \geq 50 mg org. C/m³, for smaller measuring ranges these only apply if they are factoryset in accordance with the order.

Linearity deviation

 \leq 2 % of span to 5000 mg org. C/m³, this value applies in one (calibrated) measuring range

Repeatability

 \leq 0.5 % of measurement range

Zero-point and sensitivity drift ≤ 0.5 mg org. C/m³ per week

Output fluctuation at zero point (2 σ) ≤ 0.5 % of span at electronic T₉₀ time = 20 sec

Detection limit (4 σ) $\leq 1 \%$ of span at electronic T₉₀ time = 20 sec

Influence effects

Oxygen dependence

 \leq 2 % of measured value for 0...21 vol.% O₂ or \leq 0.3 mg org. C/m³, the larger value applies

Temperature effect

Ambient temperature in permissible range at zero-point and on sensitivity: ≤ 2 % of the measured value per 10 °C or \leq 300 ppb C1 per 10 °C

Power supply effect

DC 24 V ± 5 %: ≤ 0.2 % of the span or AC 230 V ± 10 %: ≤ 0.2 % of the span or AC 115 V ± 10 %: ≤ 0.2 % of the span

Dynamic response

Warm-up time

≤ 2 hours

T₉₀ time

 T_{90} < 1.5 s at sample gas flow = 80 l/h and electronic T_{90} time = 1 sec

Calibration

Zero-point calibration

With synthetic air or catalytically purified air or nitrogen, depending on application

Sensitivity calibration

With propane or another hydrocarbon (substitute gas) in air or nitrogen, depending on application

Materials in contact with the sample medium

Analyzer, gas lines and connectors

Stainless steel 1.4305 (SAE 303) and 1.4571 (SAE 316Ti), FPM, PTFE, FFKM

Operating gases and test gases

Instrument air

Quality per ISO 8573-1 class 2 (max. particle size 1 μ m, max. particle concentration 1 mg/m³, max. oil content 0.1 mg/m³, pressure dew point at least 10 °C below the lowest foreseeable ambient temperature),

inlet pressure $p_e = 4000 \pm 500 hPa$,

flow rate typically approx. 1800 l/h (1200 l/h for air injector and approx. 600 l/h for housing purge), maximum approx. 2200 l/h (1500 l/h + 700 l/h)

Combustion air

Synthetic air or catalytically purified air with an organic C content C < 1 % MBU, inlet pressure p_e = 1200 ±100 hPa, flow rate < 20 l/h

Combustion gas

Hydrogen (H₂), grade 5.0, or H₂/He mixture (40/60 %), inlet pressure $p_e = 1200 \pm 100$ hPa, flow rate $\leq 3 \text{ I/h}$ (H₂) or approx. 10 I/h (H₂/He). A flow-limiting device must be provided on the hydrogen supply (see section 'Safe operation of the gas analyzer').

Test gases

Zero point calibration: nitrogen, grade 5.0, or synthetic air or catalytically purified air Sensitivity calibration: sample component or substitute gas component in nitrogen or air, inlet pressure $p_e = 1000 \pm 100$ hPa, flow rate 130...250 l/h

Sample gas inlet conditions

The sample gas may not be explosive at any time.

The analyzer module may not be used for the measurement of gases containing organometallic compounds, e.g. lead-containing fuel additives or silicone oils.

Temperature

≤ thermostat temperature

(Thermostat temperature for sample gas path, detector and air injector \leq 200 °C, factory-set to 180 °C)

Inlet pressure p_{abs} = 800...1100 hPa

Outlet pressure

Atmospheric pressure

Flow rate

approx. 80...100 l/h at atmospheric pressure (1000 hPa)

Humidity

≤ 40 % H₂O

Flammable gases

The analyzer module can be used for measurement of flammable gases as long as the total flammable portion does not exceed 15 vol.% CH_4 or C1 equivalents.-

Safe operation of the gas analyzer

The device concept ensures that a concentration of combustible gas or an explosive mixture of combustible gas and ambient air cannot occur in the interior of the gas analyzer during normal operation. The interior of the gas analyzer cannot be allocated to an (explosion protection) zone; an explosive gas mixture cannot escape to the outside.

The end user must make the following provisions to ensure safe operation of the gas analyzer:

- The combustion gas flow rate must be limited to a maximum of 10 l/h of H₂ or 25 l/h of H₂/He mixture. For this purpose, the end user has to provide suitable measures outside the gas analyzer.
- A shut-off valve must be installed in the combustion gas supply line to increase the safety in the following operating states: shutting down the gas analyzer, failure of the instrument air supply, leakage in the combustion gas feed path inside the gas analyzer. This shut-off valve should be installed outside the analyzer house near the combustion gas supply.

Gas and electrical connections

- 30 Power supply AC 115 or 230 V for heating of detector and sample gas inlet (4-pin male plug, connecting cable supplied)
- 31 Electrical connection to heated sample gas inlet (fixed)
- 32 Test gas outlet
- 33 Zero-point gas inlet
- 34 End-point gas inlet
- **35** Combustion air inlet
- 36 Combustion gas inlet
- 37 Instrument air inlet
- 38 Exhaust air outlet (external thread for connection of the exhaust air pipe: stainless steel tube with terminal nut and clamping ring; outside diameter = 6 mm, included in the scope of supply of the gas analyzer. Permissible maximum length of 30 cm; after that point the inner diameter of the exhaust line should be increased to ≥ 10 mm.)
- **39** Sample gas inlet, heated or unheated (Threaded connection for PTFE or stainless steel tubing with a 6-mm outer diameter)
- 40 Pressure compensation opening with protection filter
- 24 V External power supply DC 24 V (4-pin male plug)
- Bus System bus (3-pin female plug)

Sample gas line connection

- To heated sample gas inlet:
- In wall-mount housing: bottom and right
- In 19-inch housing: back, top and bottom
- To unheated sample gas inlet:
- In wall-mount and 19-inch housing: back

FID analyzer module Fidas24 NMHC

Measurement principle

Non-methane flame-ionization detector (NMHC = non-methane hydrocarbons)

The analyzer module complies with the requirements for measuring instruments with flame ionization detection according to EN 12619.

A non-methane converter is used in the analyzer module for the measurement of $\mathsf{CH}_4.$

Sample components and measurement ranges

Sample components

Hydrocarbons. The CH4/NMHC ratio must be in the 1:9 to 9:1 range.

Maximum concentration CH₄: 26500 mg org. C/m³ or 50000 ppm C1. Maximum concentration NMHC: 5000 mg org. C/m³ or 9330 ppm C1. The concentration of the gas components in the sample gas path must not exceed the temperature-dependent LEL. The analyzer temperature is 180 °C.

Number of sample components

2 sample components: CH_4 and THC. The calculated nonmethane portion of the hydrocarbons is output as 3rd component NMHC.

Smallest measurement range

0...5 to 0...1500 mg org. C/m³ or 0...10 to 0...3000 ppm C1

Largest measurement range CH₄ and THC 0...50 to 0...25000 mg org. C/m³ or

0...100 to 0...50000 ppm C1

Largest measurement range NMHC

0...5000 mg org. C/m³ or 0...10000 ppm C1

Measurement range quantity and limits

1...4 measuring ranges Measuring ranges are factory-set in accordance with order.

Stability

The following data only applies if all the influence variables (e.g. flow, temperature and air pressure) are constant. They apply to measurement ranges \geq 50 mg org. C/m³, for smaller measuring ranges these only apply if they are factoryset in accordance with the order.

Linearity deviation

 \leq 2 % of span to 5000 mg org. C/m³ this value applies in one (calibrated) measuring range

Repeatability

 \leq 0.5 % of measurement range

Zero-point and sensitivity drift $\leq 0.5 \text{ mg org. C/m}^3 \text{ per week}$

Output fluctuation at zero point (2 σ)

 ≤ 0.5 % of span at electronic T_{90} time = 20 sec

Detection limit (4 σ)

 ≤ 1 % of span at electronic T_{90} time = 20 sec

Influence effects

Oxygen dependence

 \leq 2 % of measured value for 0...21 vol.% O2 or \leq 0.3 mg org. C/m³, the larger value applies

Temperature effect

Ambient temperature in permissible range at zero-point and on sensitivity: $\le 2 \%$ of the measured value per 10 °C or ≤ 300 ppb C1 per 10 °C

Power supply effect

DC 24 V ± 5 %: ≤ 0.2 % of the span or AC 230 V ± 10 %: ≤ 0.2 % of the span or AC 115 V ± 10 %: ≤ 0.2 % of the span

Dynamic response

Warm-up time ≤ 2 hours

T₉₀ time

 $T_{90}<2.5$ s via bypass, $T_{90}<3$ s via converter at sample gas flow = 80 l/h and electronic T_{90} time = 1 sec

Switchover time

Between bypass and converter typically 20 s, depending on measurement range

Converter

Converter service life

The catalyst is a consumable material. Its service life depends on the concentration of the converted hydrocarbons. Catalyst poisons (e.g. SO₂, HCl, H₂S, halogenated hydrocarbons, heavy metals) will shorten the converter service life. Their respective concentration should always be < 20 mg/m³. It is recommended to test the converter function once a year.

Calibration

Zero-point calibration

With synthetic air or catalytically purified air, depending on application

Sensitivity calibration

With methane or propane in air, depending on application

Materials in contact with the sample medium

Analyzer, gas lines and connectors

Stainless steel 1.4305 (SAE 303) and 1.4571 (SAE 316Ti), FPM, PTFE, FFKM

Operating gases and test gases

Instrument air

Quality per ISO 8573-1 class 2 (max. particle size 1 μ m, max. particle concentration 1 mg/m³, max. oil content 0.1 mg/m³, pressure dew point at least 10 °C below the lowest foreseeable ambient temperature), inlet pressure p_e = 4000 ±500 hPa, flow rate typically approx. 1800 l/h (1200 l/h for air injector and approx. 600 l/h for housing purge), maximum approx. 2200 l/h (1500 l/h + 700 l/h)

Combustion air

Synthetic air or catalytically purified air with an organic C content C < 1 % MBU, inlet pressure p_e = 1200 ±100 hPa, flow rate < 20 l/h

29

Combustion gas

Hydrogen (H₂), grade 5.0, or H₂/He mixture (40/60 %), inlet pressure $p_e = 1200 \pm 100$ hPa, flow rate ≤ 3 l/h (H₂) or approx. 10 l/h (H₂/He). A flow-limiting device must be provided on the hydrogen supply (see section 'Safe operation of the gas analyzer').

Test gases

Zero point calibration: synthetic air or catalytically purified air. Sensitivity calibration: sample component CH₄: CH₄ in air, sample component THC: C₃H₈ in air or CH₄ in air. Inlet pressure $p_e = 1000 \pm 100$ hPa, flow rate 130...250 l/h

Test gases for converter effectiveness testing

 CH_4 or C_2H_6 in air (separate test gas bottles), connection via bypass, inlet pressure p_e = 1000 ±100 hPa, flow rate 130...250 l/h

Sample gas inlet conditions

The sample gas may not be explosive at any time. The analyzer module may not be used for the measurement of gases containing organometallic compounds, e.g. lead-containing fuel additives or silicone oils.

Temperature

≤ thermostat temperature

(Thermostat temperature for sample gas path, detector and air injector \leq 200 °C, factory-set to 180 °C)

Inlet pressure

p_{abs} = 850...1100 hPa

Outlet pressure

Atmospheric pressure

Flow rate

approx. 80...100 l/h at atmospheric pressure (1000 hPa)

Humidity ≤ 40 % H₂O

Flammable gases

The analyzer module can be used for measurement of flammable gases as long as the total flammable portion does not exceed 5 vol.% CH₄ or C1 equivalents.

Safe operation of the gas analyzer

The device concept ensures that a concentration of combustible gas or an explosive mixture of combustible gas and ambient air cannot occur in the interior of the gas analyzer during normal operation. The interior of the gas analyzer cannot be allocated to an (explosion protection) zone; an explosive gas mixture cannot escape to the outside. The end user must make the following provisions to ensure safe operation of the gas analyzer:

- The combustion gas flow rate must be limited to a maximum of 10 l/h of H₂ or 25 l/h of H₂/He mixture. For this purpose, the end user has to provide suitable measures outside the gas analyzer.
- A shut-off valve must be installed in the combustion gas supply line to increase the safety in the following operating states: shutting down the gas analyzer, failure of the instrument air supply, leakage in the combustion gas feed path inside the gas analyzer. This shut-off valve should be installed outside the analyzer house near the combustion gas supply.

Gas and electrical connections

- 30 Power supply AC 115 or 230 V for heating of detector and sample gas inlet (4-pin male plug, connecting cable supplied)
- 31 Electrical connection to heated sample gas inlet (fixed)
- 32 Test gas outlet
- 33 Zero-point gas inlet
- 34 End-point gas inlet
- 35 Combustion air inlet
- 36 Combustion gas inlet
- 37 Instrument air inlet
- 38 Exhaust air outlet (external thread for connection of the exhaust air pipe: stainless steel tube with terminal nut and clamping ring; outside diameter = 6 mm, included in the scope of supply of the gas analyzer. Permissible maximum length of 30 cm; after that point the inner diameter of the exhaust line should be increased to ≥ 10 mm.)
- **39** Sample gas inlet, heated or unheated (Threaded connection for PTFE or stainless steel tubing with a 6-mm outer diameter)
- 40 Pressure compensation opening with protection filter
- 24 V External power supply DC 24 V (4-pin male plug)
- Bus System bus (3-pin female plug)

Sample gas line connection

- To heated sample gas inlet:
- In wall-mount housing: bottom and right
- In 19-inch housing: back, top and bottom
- To unheated sample gas inlet:
- In wall-mount and 19-inch housing: back

Laser analyzer module LS25

Measurement principle

The LS25 laser analyzer module is based on a measuring principle called single-line spectroscopy. One single target gas absorption line with no interference is chosen in the near infrared spectral range. A single mode diode laser operating around room temperature scans this single absorption line. A detector diametrically opposite detects the light and the absorption caused only by the target gas molecules. Once the absorption by the target gas molecules is detected, the gas concentration is calculated. Automatic corrections for temperature and pressure variations are included.

Sample components and measurement ranges

The LS25 laser analyzer module has one physical measurement range per sample component. The indicated measurement range can be freely calibrated within the physical measurement range. The smallest detection limits and corresponding measurement ranges are shown in the table below:

Sample	Smallest	Max.	Max.
component	measuring range	abs.	temperature
		pressure	
O ₂	0 1 vol.%	10 bar	1500 °C
NH₃	0 20 ppm	1.5 bar	500 °C
HCI	0 5 ppm	1.5 bar	400 °C
HF	0 3 ppm	1.5 bar	300 °C
H₂S	0 300 ppm	1.5 bar	300 °C
H₂O (ppm)	0 30 ppm	1.5 bar	1300 °C
H₂O (vol.%)	0 1 vol.%	1.5 bar	1500 °C
CO (ppm)	0 20 ppm	1.5 bar	500 °C
CO (vol.%)	0 1 vol.%	1.5 bar	600 °C
CO₂ (ppm)	0 100 ppm	1.5 bar	300 °C
CO ₂ (vol.%)	0 1 vol.%	1.5 bar	1500 °C
NO	01500 ppm	1.5 bar	300 °C
N₂O	0 500 ppm	1.5 bar	200 °C
HCN	0 30 ppm	1.5 bar	300 °C
CH ₄	0 1 vol.%	1.5 bar	500 °C
NH₃ +	0 20 ppm	1.5 bar	500 °C
H₂O	0 2 vol.%		
HCI +	0 5 ppm	1.5 bar	400 °C
H₂O	0 5 vol.%		
HF +	0 3 ppm	1.5 bar	300 °C
H₂O	0 2 vol.%		
CO (vol.%) +	0– 1 vol.%	1.5 bar	600 °C
CO2 (vol.%)	0- 1 vol.%		
HCI +	0 300 ppm	1.5 bar	400 °C
CH4	0 1 vol.%		
CO (ppm) +	0 20 ppm	1.5 bar	500 °C
CH ₄	0 100 ppm		
CO (ppm) +	0 100 ppm	1.5 bar	1500 °C
H2O (vol.%)	0 5 vol.%		
O₂ + temp.	0 1 vol.%	1.5 bar	1500 °C

Other sample components on request.

All specifications refer to an optical path length (OPL) of 1 meter, tested in ABB's test/calibration jig. The standard optical path length ranges from 0.5 to 6 m (larger OPL on request).

Application-dependent variations may occur. To obtain minimum measuring ranges, in some cases additional measures have to be taken: measurement of low O_2 and H_2O concentrations require instrument and process purging with nitrogen. Actual detection limit for a specific application will depend on the gas conditions (pressure, temperature and gas composition) and optical path length. If more than one min. measurement range is shown, there are different instrument versions available.

Min. measurement range, max. pressure and max. temperature cannot necessarily be realized simultaneously. The maximum pressure and temperature given are physical (spectroscopic) limits. Applications with increased temperature or pressure or with toxic or flammable gas may require additional equipment.

Measurement range quantity

1 range per sample component, 1 x transmission

Largest measurement range

Largest measurement range is generally 100 times the minimum measurement range for the same conditions. Larger measurement ranges are normally possible by adaptation of measuring path and choice of a weaker absorption line.

Stability

Linearity deviation

≤ 1 % of span

Repeatability

±Detection limit or ±1 % of reading, whichever is greater

Zero point drift

< 2 % of smallest possible measurement range per 3 months

Span drift

< 4 % of measurement range per 6 months

Output fluctuation (2 σ)

 \leq 0.5 % of smallest measurement range

Detection limit (4 σ)

 \leq 1 % of smallest measurement range

Influence effects

Flow effect

No effect on the measurement, but the flow will determine the amount of purge gas needed.

Associated gas effect/cross sensitivity

No cross sensitivity within normal operation conditions.

Temperature effect

- Ambient temperature in permissible range: No significant effect
- Effect of sample gas temperature: typically ≤ 2 % of measured value per 10 °C (dependent on type of gas and gas conditions). For large variations in sample gas temperature (> ±20 °C) separate temperature measurement for compensation is recommended.

Pressure effect

- at the zero point: no effect
- Automatic compensation for large variations in sample gas pressure by measurement of absorption line width, alternatively by input from pressure sensor.

31

Power supply effect DC 24 V ± 5 %: ≤ 0.2 % of the span

Dynamic response

Warm-up time Approx. 1 hour

Response time Less than 2 seconds without signal averaging

Calibration

Maintenance interval

Depending on application and dust load; typically once or twice a year (no consumables required).

Zero-point check

With inert gas, e.g. nitrogen, or with ambient air that is free of the sample component. The zero point cannot be calibrated. Due to the measurement principle, there is no zero-point drift.

Calibration

With test gas and a flow-through test cell. Calibration interval typically between every 6 months and once a year. Recommended calibration interval will be stated in calibration certificate that accompanies delivery.

Materials in contact with the sample medium

Purge and alignment unit Stainless steel 316SS

Windows

BK7 glass, optional: fused silica, for HF: sapphire

Mounting

Available flanges

DN50/PN10, DN80/PN10, ANSI 2"/150 lbs, ANSI 2"/300 lbs, ANSI 3"/150 lbs, ANSI 3"/300 lbs

Alignment tolerances

Flanges parallel within 1.5°

Purging of windows

Dry and oil-free pressurized air or gas, or by fan

Gas ports for purging

Standard: ³/₈-inch hose nozzle for hoses with 10 mm inner diameter; for connection diagram see page 32

Weight

Laser unit + flange with purging unit:: 9.5 (6.3 + 3.2) kg, Receiver unit + flange with purging unit:: 7.2 (4.0 + 3.2) kg, Calibration tube: 3.8 kg

Dimensions

See page 33

Electrical connections on transmitter unit

Connection to central unit

Ethernet 10/100BASE-T; RJ45 plug; Cable length: standard 15 m, max. 100 m

Connection to receiver unit

15-pin Sub-D female connector Cable length: standard 5 m, max. 150 m

Power supply, external pressure and temperature signals

15-pin Sub-D male connector; cable length laser unit–power supply: standard 3 m, max. 100 m; cable length power supply– plug: 3 m

Service computer

RS232, 9-pin female Sub-D connector; Ethernet

Connection diagram

See page 33

Process gas properties

Maximum process gas temperature and pressure are given in the 'Sample components and measurement ranges' table. Quantification of dust/particle concentration is necessary in order to determine max OPL. The maximum dust concentration must be checked by ABB Analytical.

Purge gas requirements

The purge gas should not contain any sample gas components and must be oil- and dust-free.

Power supply

Input voltage

DC 24 V \pm 5 % from an external power supply unit AC 115/230 V (part of the delivery for general-purpose applications)

Power consumption

Approx. 20 W

Installation site requirements

The mounting location strongly influences the measurement result. The measurement gas must be well stirred at the selected location to produce a representative measurement result. Stratification in the measurement gas path results in erroneous measurement. If the measurement gas is charged with dust, the LS25 must be mounted at right angles to the process gas flow.

Explosion-proof versions

The AO2000-LS25 Ex analyzer module is suited for use in areas in which explosive atmospheres caused by vapors, gases, mists, or air/dust mixtures are likely to occur. The external power supply is not approved for installation in hazardous areas.

Version for use in Zone 2 – ATEX

Marking

Housing protection type

Version for use in Class 1, Division 2 - CSA

The AO2000-LS25 Ex analyzer module is certified for use in hazardous areas Class 1, Division 2, Groups A, B, C and D, Temperature Code T4, ambient temperature max. +55 °C. Certificate No. 1105720

... Laser analyzer module LS25

Gas connections (general-purpose application)

Dimensions and electrical connections (general-purpose application)

Electrochemical oxygen sensor

Measurement principle

Electrochemical oxygen sensor

Sample component and measuring ranges

Sample component Oxygen (O₂)

Smallest measurement range 0...5 vol.% O₂

Measurement range quantity and limits 1...2 measuring ranges adjustable from 0...5 vol.% O₂ to 0...25 vol.% O₂

Stability

Linearity deviation ≤ 1 % of span

Repeatability ≤ 0.5 % of span

Zero point drift Stable over long-term due to absolute zero point

Span drift ≤ 1 % of the measurement range per week

Output fluctuation (2 σ) ≤ 0.2 % of the measurement range at electronic T₉₀ time (static/dynamic) = 5/0 sec

Detection limit (4 o) ≤ 0.4 % of the measuring range scope with electronic T₉₀ time (static/dynamic) = 5/0 sec

Influence effects

Flow effect Flow rate in the 20...100 l/h range: $\leq 2 \%$ of the measuring range scope

Temperature effect Ambient temperature in the permissible range: ≤ 0.2 vol.% O₂ per 10 °C

Air pressure effect

- at the zero point: no effect
- on sensitivity without pressure correction
- \leq 1 % of the measured value per 1 % of air pressure change on sensitivity without pressure correction
- ≤ 0.2 % of the measured value per 1 % air pressure change Pressure correction is only possible if the oxygen sensor is connected to an analyzer module with an integral pressure sensor.

Power supply effect

Voltage and frequency in the permissible range: \leq 0.2 % of the measuring range scope

Dynamic response

T₉₀ time

 $T_{90} \leq 30$ sec, depending on sample gas flow and system layout

Calibration

Zero-point calibration The oxygen sensor zero is not calibrated since it is fundamentally stable.

End-point calibration With ambient air at 20.96 vol.% O₂

Materials in contact with the sample medium

Sensor: Polystyrol ABS, PTFE, FPM; Housing body: PVC-U, FPM gasket; Gas ports: stainless steel 1.4571

Sample gas inlet conditions

The oxygen sensor must not be used for measurement of flammable gases and ignitable gas/air or gas/oxygen mixtures.

Temperature

The sample gas dew point should be at least 5 °C below the ambient temperature throughout the sample gas path. Otherwise, a sample gas cooler or condensate trap is required.

Moisture content

 H_2O dew point $\geq 2\ ^\circ C$ The oxygen sensor should not be used with dry sample gas.

Inlet pressure pe = 2...500 hPa

Outlet pressure

Atmospheric pressure

Flow rate 20...100 l/h

Associated gas

The oxygen sensor may not be used if the associated gas contains the following components: H_2S , chlorine or fluorine compounds, heavy metals, aerosols, mercaptans, and alkaline components.

Notes

The oxygen sensor is always associated with an analyzer module and must be installed in the same housing with that analyzer module.

The oxygen sensor cannot be used with the following analyzer modules:

- Limas21 UV, Limas21 HW with stainless steel, PFA or PTFE gas lines
- Fidas24, Fidas24 NMHC
- Analyzer modules for measuring corrosive gases
- Analyzer modules in category 2G

35

Pneumatic Module

Test gas supply

Design One or three 3/2-way solenoid valves

Power consumption Approx. 3 W per solenoid valve

Materials in contact with the sample medium PVDF, FPM, aluminum, stainless steel 1.4305 (SAE 303)

Fine filtration

Design Disposable filter with borosilicate glass microfiber filter element

Retention rate 99.99 % for particles > 0.1 μm

Materials in contact with the sample medium Polyamide, borosilicate glass with PVDF binder

Gas supply

Design Magnetic piston pump

Feed rate Max. 60 I/h, depending on analyzer module and inlet/outlet pressure

Flow rate Adjustable

Power consumption approx. 10 W

Materials in contact with the sample medium PVDF, EPDM, stainless steel 1.4571 (SAE 316Ti)

Flow monitoring

Design Miniature flow sensor

Readout and limit value monitoring Configurable

Materials in contact with the sample medium Al_2O_3 , silicon, gold, GFK

Pressure monitoring

Pressure sensor

(Option) for additional monitoring tasks, e.g. pressure measurement in the second gas path of the Uras26 analyzer module

Sample gas inlet conditions

The pneumatics module must not be used for measurement of flammable gases and ignitable gas/air or gas/oxygen mixtures.

Temperature +5...+45 °C

The sample gas dew point should be at least 5 °C below the ambient temperature throughout the sample gas path. Otherwise, a sample gas cooler or condensate trap is required.

Inlet pressure

pe = -80...+20 hPa

Flow rate 30...60 l/h

Corrosive gases

Corrosive associated gas components and aerosols must be cooled or undergo prior absorption.

Notes

The pneumatics module is always associated with an analyzer module and must be installed in the same housing with that analyzer module.

The pneumatics module cannot be used when stainless steel tubes are used for the internal gas lines.

The pneumatics module cannot be used with the following analyzer modules:

- Limas21 UV, Limas21 HW with stainless steel, PFA or PTFE gas lines
- Fidas24, Fidas24 NMHC
- Analyzer modules in category 2G

Explosion protected versions in category 3G

Version in category 3G for measurement of flammable and non-flammable gases ('Safety concept')

The 'safety concept' gas analyzers include:

- Uras26 in the version with safety cell and purged sample cell windows
- Magnos206, Magnos28, Caldos25 and Caldos27 in the version with direct sample chamber connection and purged thermostat housing.

Monitoring of the purge gas flow rate is a feature of the 'safety concept'. It is fully integrated into the gas analyzer, together with the controls and signal processing.

The version complies with the Directive 2014/34/EU (ATEX directive). There are the following explosion protection measures in the gas analyzer:

- Non-arcing assemblies and components/non-hot components/sealed (arcing) devices in accordance with EN 60079-15 and
- Simplified positive pressure containment per EN 60079-2.

Marking

Ex II 3G Ex nA pyb II T4 Gc

Housing protection type IP54

Sample gas inlet conditions

Sample gas

Flammable and non-flammable gases and vapors

- Absolute pressure \leq 1.2 bar
- Oxygen content ≤ 21 vol.%
- Temperature class T4,
- Not potentially explosive under normal conditions,
- If potentially explosive in the event of a fault, then only seldom and briefly (in accordance with zone 2).

If the sample gas is a mixture only of oxygen and flammable gases and vapors, it must not be explosive under any conditions. As a rule, this can be achieved by limiting the oxygen content to a maximum of 2 vol.%.

Flammable gases and vapors that are explosive under the conditions encountered in analysis even when oxygen is excluded should be present in the mixture only in concentrations that are not critical to safety.

Pressure

At sample gas inlet: positive pressure $p_e \le 3$ hPa, at sample gas outlet: atmospheric

Flow rate Max. 40 l/h

Inert gas curtain/purge gas/ (simplified) pressurized enclosure

Purge gas Inert gas (nitrogen)

nere gus (incre

Pressure

Positive operating pressure $p_e \ge$ sample gas pressure + 0.5 hPa

Flow rate

In operation: 15...20 l/h, during initial purge: 15...50 l/h

Initial purge

manually controlled; initial purge duration: Uras26: 1.6 minutes at min. 15 I/h; Magnos206, Caldos25, Caldos27: 18 minutes at min. 15 I/h or 6 minutes at min. 50 I/h

Alarm

When flow rate drops below a minimum value of 15 l/h (corresponds to approx. 7 hPa) and when flow rate exceeds a maximum value of 50 l/h (corresponds to approx. 60 hPa)

Version in category 3G for measurement of nonflammable gases

The analyzer modules Uras26, Magnos206, Magnos28, Magnos27, Caldos25 and Caldos27 are suited for measuring non-flammable gases. The analyzer modules are mounted in the central unit housing or in a separate housing (either wall-mount or 19-inch rack unit).

The version complies with the Directive 2014/34/EU (ATEX directive). The gas analyzer is protected by provisions according to EN 60079-15 (non-arcing electrical equipment, sealed arcing devices).

In undisturbed operation, there cannot be any sparking, arcing or impermissible temperatures inside the device. During operation, all unused gas ports should be plugged.

Marking

🕞 II 3G Ex nA nC IIC T4 Gc

Housing protection type IP54
Gas connections 'Safety concept'

Uras26

- 1 Sample gas inlet gas path 1
- **2** Sample gas outlet gas path 1
- 3 Purge gas inlet sample cell windows 'Analyzer purge in'
- 4 Purge gas inlet housing
- 5 Purge gas outlet housing
- 6 Purge gas outlet 'Analyzer Purge Out' flow rate monitoring
- 7 Sample gas outlet gas path 2
- 8 Sample gas inlet gas path 2
- **9** Pressure sensor (option)

Magnos206

- 1 Sample gas inlet
- 2 Sample gas outlet
- 3 Purge gas inlet thermostat chamber 'Analyzer purge in'
- 4 Purge gas outlet thermostat chamber, piped with 13
- 7 Purge gas inlet housing
- 8 Purge gas outlet housing
- 9 Pressure sensor 1
- 10 Pressure sensor 2
- 11 not used, sealed
- 12 not used, sealed
- 13 Purge gas outlet flow rate monitor, piped with 4
- 14 Purge gas outlet 'Analyzer Purge Out' flow rate monitoring

Magnos28

- 1 Sample gas inlet
- 2 Sample gas outlet
- 3 Purge gas inlet thermostat chamber 'Analyzer purge in'
- 4 Purge gas outlet thermostat chamber, piped with 13
- 7 Purge gas inlet housing
- 8 Purge gas outlet housing
- 9 Pressure sensor 1
- 10 Pressure sensor 2
- 11 not used, sealed
- 13 Purge gas outlet flow rate monitor, piped with 4
- 14 Purge gas outlet 'Analyzer Purge Out' flow rate monitoring

Caldos25, Caldos27

- 1 Sample gas inlet
- 2 Sample gas outlet
- 3 Purge gas inlet thermostat chamber 'Analyzer purge in'
- 4 Purge gas outlet thermostat chamber, piped with 13
- 7 Purge gas inlet housing
- 8 Purge gas outlet housing
- 9 Pressure sensor 1
- 10 Pressure sensor 2
- 11 not used, sealed
- 12 not used, sealed
- 13 Purge gas outlet flow rate monitor, piped with 4
- 14 Purge gas outlet 'Analyzer Purge Out' flow rate monitoring

General data

Display and operation

Display Backlit graphics display, 320 x 240-pixel resolution

Measured value display

Digits with unit and bargraph;

simultaneous display of up to 6 measured values, configurable

Units of measure

Selectable in physical units, e.g. ppm, vol.%, mg/m³ or g/m³, as well as in % of span or mA

Digital value resolution Better than 0.2 % of span

Status indication

Green LED: power supply on Yellow LED: maintenance request, red LED: failure

Status messages

Plain text

Operation

Panel with six soft keys, two cancel keys and 10-digit keypad; menu-driven interface, various languages available

There are three ways of executing the measuring range switch-

Measuring range switch-over and feedback

over:

- Manually on the gas analyzer
- Automatically ('autorange') by means of appropriate configured switch-over thresholds
- Externally controlled via appropriately configured digital inputs.

The measuring range feedback can be implemented via appropriately configured digital outputs; it is independent of the selected type of measuring range switch-over.

Limit value monitoring

Limit values can be set during the gas analyzer configuration. The limit value signals (alarms) are output via digital outputs.

Housing

Versions

19-inch housing (model AO2020) or Wall-mount housing (model AO2040)

Housing protection type

IP65 without power supply and without display/control unit, IP54 with display and control unit and connection box, IP20 without connection box in accordance with EN 60529

Housing materials

Housing: stainless steel 1.4016, module rear panel: aluminum, keypad sheet: polyester

Housing color

Light gray (RAL 7035), basalt gray (RAL 7012)

Weight

Analyzer unit with one analyzer module: 18...23 kg

Dimensions See page 45

Housing purge

Housing purge is possible with IP54 version with connection box. Purge version can be fitted with screwed cable glands (per EN) or with conduit connections (per CSA). Purge gas flow during operation max. 20 l/h (Fidas24, Fidas24 NMHC: approx. 300 l/h), purge gas pressure p_e = 2...4 hPa. The purge gas should not contain any sample gas components.

Pressure sensor

Use

Standard with Uras26, Limas21 UV, Limas21 HW, Caldos27; optional with Magnos206, Magnos28 and Magnos27; not required with Caldos25, Fidas24, ZO23

Working range

p_{abs} = 600...1250 hPa

Materials in contact with the sample medium Silicone gel, plastics, FPM (Fluorocarbon rubber)

Sample gas composition

The pressure sensor must not be connected to the sample gas path when the sample gas is corrosive, flammable or explosive.

Gas connections

I avout

Gas ports on back (19-inch rack housing) or bottom (wall-mount housing) of the analyzer module

Design

1/8 NPT internal threads for commercially available adapters, e.g. Swagelok®, unless other versions are specified in the technical data of the individual analyzer modules.

Electrical connections

Central unit

Power supply: 3-pin grounded instrument connector in accordance with EN 60320/C14, connection cable in scope of supply

Ethernet: two 8-pin RJ45 plugs; system bus: 3-pin socket connector

Analyzer modules

Power supply: 4-pin male connector;

Heating of detector and sample gas inlet (FID analyzer modules): 4-pin male connector, connection cable in scope of supply; System bus: 3-pin female plug

Electrical safety

Tested to EN 61010-1:2010

IP rating

Central unit with electronics module (power supply): I, Analyzer module without electronics module (power supply): III

Overvoltage category/pollution degree Power supply: II/2

Safe isolation

The power supply is electrically isolated from other circuits by means of reinforced or double insulation. Operational low voltage (PELV) on low-voltage side

Electromagnetic compatibility

Noise immunity

Tested per EN 61326-1:2013. Inspection level: industrial area, fulfills at least the evaluation criteria according to Table 2 of EN 61326-1.

Emitted interference

Tested per EN 61326-1:2013. Limit value class B for interference field strength and interference voltage is met.

Mechanical stress

Transport

Vibration test per EN 60068-2-6:1996. Shock test per EN 60068-2-27:1995. In its original packaging, the gas analyzer withstands normal shipping conditions.

Installation site requirements

Installation location

The gas analyzer is intended for indoor installation only. Altitude above 2000 m on request.

Vibration

Analyzer unit only:	
Uras26:	max. ±0.04 mm at 555 Hz, 0.5 g at 55150 Hz; slight transient effect on measured value in the region of the beam modulation frequency
Limas21 UV:	max. ±0.04 mm at 555 Hz, 0.5 g at 55150 Hz
Limas21 HW:	max. ±0.04 mm/0.5 g at 5150 Hz
Magnos206:	max. ±0.04 mm at 520 Hz
Magnos28:	max. ±0.04 mm at 520 Hz
Magnos27:	max. ±0.04 mm at 560 Hz
ZO23:	max. ±0.04 mm at 555 Hz, 0.5 g at 55150 Hz
Caldos25:	max. ±0.04 mm at 530 Hz
Caldos27:	max. ±0.04 mm at 555 Hz, 0.5 g at 55150 Hz
Fidas24:	Max. 0.5 g, max. 150 Hz
Fidas24 NMHC:	Max. 0.5 g, max. 150 Hz
LS25:	Max. ±0.6 mm around the optical axis, max. 500 Hz

Analyzer unit installed in cabinet (analyzer system): acceleration max. 0.01 ms^{-2} in frequency range 0.1...200 Hz. For compliance with the metrological data, a vibration damped/decoupled installation of the gas analyzer may be necessary in accordance with the vibration effects at the installation site.

Operation:	When installed in housing		
·	with	without	
	electronics module	electronics	
		module	
Uras26:	+5+40 °C	+5+45 °C	
Limas21 UV:	+5+40/45 °C	+5+45 °C	
	with or w/o I/O cards	5	
Limas21 HW:	+15+35 °C	+15+35 °C	
Magnos206:	+5+45 °C	+5+50 °C	
Magnos28:	+5+45 °C	+5+50 °C	
Magnos27:	+5+45 °C	+5+45 °C,	
		+5+50 °C 1)	
ZO23:	+5+45 °C	+5+45 °C	
Caldos25:	+5+45 °C	+5+45 °C	
Caldos27:	+5+45 °C	+5+50 °C	
Fidas24:	+5+45 °C	+5+45 °C	
Fidas24 NMHC:	+5+40 °C	+5+40 °C	
LS25:	-20+55 °C, no direct solar radiation		
Oxygen sensor:	+5+40 °C in 19-inch housing,		
	+5+35 °C in wall-mount housing		
Central unit without			
analyzer module:	+5+55 °C		
Storage and transport:	-25+65 °C,		
	Oxygen sensor: -20	.+60 °C	

1) With direct sample cell connection and when installed in housing without Uras26

Relative humidity

< 75 %, no condensation

Climate class

3K3 for IP20 housing (non-condensing), 3K4 for IP54 housing (condensing) in accordance with EN 60721-3-3

Air circulation

For sufficient air circulation, multiple housings in a 19-inch rack must be installed with a separation of at least one height unit between housings. 40

... General data

Power supply

Power supply unit

Input voltage

AC 100...240 V, -15 %, +10 %, max. 2.2 A, 50...60 Hz ±3 Hz

Power consumption Max. 187 VA

Output voltage

DC 24 V \pm 3 % to supply the electronics module (see page 41) and one analyzer module installed in the central unit or (optionally) one external analyzer module

Fidas24, Fidas24 NMHC:

Heating of detector and sample gas inlet

Input voltage

AC 115 V or 230 V, ±15 % (max. AC 250 V), 47...63 Hz

Power consumption

Fidas24:	125 VA for detector
	125 VA for sample gas inlet (option)
Fidas24 NMHC:	Approx. 200 VA for detector
	125 VA for sample gas inlet (option)

Analyzer modules

Input voltage DC 24 V ±5 %

Power consumption

Power consumption	
Uras26:	Max. 95 W
Limas21 UV:	max. 100 W
Limas21 HW:	max. 100 W
Magnos206:	max. 50 W
Magnos28:	max. 50 W
Magnos27:	max. 35 W
ZO23:	max. 35 W
Caldos25:	max. 25 W
Caldos27:	max. 17 W
Fidas24:	max. 40 W
Fidas24 NMHC:	max. 40 W
LS25:	Approx. 20 W

Note on the metrological data of the analyzer modules

The metrological data for the analyzer modules apply only when operated in conjunction with the central unit. They have been determined in accordance with IEC 61207-1:2010 'Expression of performance of gas analyzers – Part 1': They are based on operation at atmospheric pressure (1013 hPa) and nitrogen as the associated gas. Compliance with these characteristics when measuring other gas mixtures can only be assured if their composition is known. The physical detection limit is the lower limit of the measurement-related data relative to the measuring range span.

Electronics module

Processing of measured values and signals

Processor system with buffered real-time clock and non-volatile memory for firmware and device data.

Software updates can be obtained via the Ethernet interface.

I/O modules

Number of Slots 5 slots (see 'Electrical connections')

Technical data

See pages 42 to 44

Notes regarding conductor section

- The maximum capacity of terminals for stranded or solid conductors is 1 mm² (17 AWG).
- The stranded conductor may be tinned on the tip or twisted for simplified connection.
- When using wire end ferrules the total section should not exceed 1 mm², i.e. the maximum stranded conductor section cannot be greater than 0.5 mm². The Weidmüller PZ 6/5 crimping tool must be used for crimping the ferrules.

Electrical connections

Interfaces

Ethernet

To connect the gas analyzer to Ethernet networks. TCP/IP protocol and Modbus TCP/IP protocol via 10/100/1000BASE-T interface. Electrical connection: Two 8-pin RJ45 plugs

System bus

Internal bus for communication between the gas analyzer's functional units. Electrical connection: 3-pin female connector

Power supply

Input voltage

DC 24 V ±3 % from the built-in power supply (see page 40)

Power consumption

approx. 15 W without I/O modules

	-x07 -x07
-X28 ••••••••-X29	-X08 -X09
-X26 •••••••••-X27	-X20 -X29
-X24	
-X22	
-X01 -X07 -X20 -X21 -X21	Not The I/O
© -X08 -X09	Ø

(20... I/O modules (5 slots), options:

Power supply connection

System bus connection

- Profibus module

interfaces

- Modbus module
- digital I/O module
- 2-way analog output module

Ethernet 10/100/1000BASE-T

- 4-way analog output module
- 4-way analog input module
- Connection diagrams see pages 42 to 44

ote

he drawing shows an example for the O modules equipment.

I/O modules

Profibus module

Application

Integration of the gas analyzer into PROFIBUS PA and PROFIBUS DP networks for transfer of measured values and status signals as well as analog input, digital input and digital output signals. Digital data transmission certified in accordance with the VDI 4201 guideline, Sheet 1 and Sheet 2.

Electrical connections

RS485 interfac	ce:	
1 -	not used	
2 M24	24 V output ground, max. 0.2 A	
3 RxD/TxD-P	Receive/transmit data plus, B-line	
4 -	not used	
5 DGND	Data transmission potential (reference pot. for	
	VP)	
6 VP	Supply voltage plus (5 V)	
7 P24	24 V output voltage plus	
8 RxD/TxD-N	Receive/transmit data N, A-line	
9 -	not used	
Version: 9-pin sub-D female connector		
MBP interface (non-intrinsically safe):		

Connection diagram

1 +

2 Shield

3 -

4 not used

Version: 4-pin terminal strip. Observe the information regarding conductor section (see page 41)!

Modbus module

Application

Transfers measured values and status signals as well as analog inputs, digital inputs and digital outputs to host systems, e.g. to standard Windows applications via M-DDE Server; Modbus slave protocol in RTU (remote terminal unit) mode or via RS485 or RS232 interface (configurable).

Electrical connections

RS232 Interface:	RS485 interface:
2 RxD	2 RTxD-
3 TxD	3 RTxD+
5 GND	5 GND
Version:	Version:
9-pin sub-D female connector	9-pin sub-D female connector

Connection diagram

digital I/O module

Digital inputs (DI1...DI4)

Optocouplers with internal DC 24 V power supply, jointly electrically isolated from ground. Control with floating contacts, with external voltage DC 12...24 V or with open collector drivers PNP or NPN.

Digital outputs (DO1...DO4)

Floating double-throw contacts, max. contact load rating DC 30 V/1 A, galvanically isolated from ground. Relays must at all times be operated within the specified data range. Inductive or capacitive loads are to be connected with suitable protective measures (self-induction recuperation diodes for inductive loads and series resistors for capacitive loads).

Standard function block applications

Status signals, externally controlled calibration:

- DO1 Failure/collective status
- DO2 Maintenance mode/limit value
- DO3 Maintenance request/limit value
- DO4 External solenoid valve
- DI1 Start automatic calibration
- DI2 Inhibit automatic calibration
- DI3 Calibrate zero-point
- DI4 Calibrate end-point

Measurement range control:

- DO1 Measurement range feedback
- DO2 Measurement range feedback
- DO3 Measurement range feedback
- DO4 Measurement range feedback
- DI1 Measurement range switchover
- DI2 Measurement range switchover
- DI3 Measurement range switchover
- DI4 Measurement range switchover
- Limit values:
 - DO1 Limit value
 - DO2 Limit value
 - DO3 Limit value
 - DO4 Limit value
 - DI1 Calibration cells in/out
 - DI2 Hold current output
 - DI3 Pump on/off
 - DI4 External failure
- Calibration control:
- alloration control:
- ${\rm DO1}\ \ {\rm External}\ {\rm solenoid}\ {\rm valve}\ {\rm sample}\ {\rm gas}$
- DO2 External solenoid valve zero gas
- DO3 External solenoid valve span gas
- DO4 External pump on/off
- DI1 Pump on/off
- DI2 External failure
- DI3 External failure
- DI4 External failure

Electrical connections

see connection diagram

Version: 2x12-pin terminal strip. Observe the information

regarding conductor section (see page 41)!

The terminal layout in a delivered gas analyzer will be shown in

the applicable attached 'Product data sheet'.

Relays are shown in the unpowered state. The unpowered state is the failure mode.

... I/O modules

2-way analog output module

2 analog outputs (AO1, AO2)

0/4...20 mA (configurable, factory-set to 4...20 mA), common negative pole, electrically isolated from ground, freely connectable to ground, max. gain relative to protective ground potential 50 V, max. working resistance 750 Ω . Resolution 16 bit. The output signal cannot be lower than 0 mA.

Electrical connections

see connection diagram

Version: 4-pin terminal strip. Observe the information regarding conductor section (see page 41)!

The terminal layout in a delivered gas analyzer will be shown in the applicable attached 'Product data sheet'.

4-way analog output module

4 Analog outputs (AO1...AO4)

0/4...20 mA (configurable, factory-set to 4...20 mA), common negative pole, electrically isolated from ground, freely connectable to ground, max. gain relative to protective ground potential 50 V, max. working resistance 750 Ω . Resolution 16 bit. The output signal cannot be lower than 0 mA.

Electrical connections

see connection diagram

Version: 8-pin terminal strip. Observe the information regarding conductor section (see page 41)!

The terminal layout in a delivered gas analyzer will be shown in the applicable attached 'Product data sheet'.

Connection diagram

Connection diagram

4-way analog input module

4 Analog Inputs (AI1...AI4)

0...20 mA, jointly electrically isolated from ground,working resistance 50 Ω

Current output

DC 24 V for supply of an external sensor, fused with 100 mA (resettable fuse)

Electrical connections

see connection diagram

Version: 2x5-pin terminal strip. Observe the information

regarding conductor section (see page 41)!

The terminal layout in a delivered gas analyzer will be shown in the applicable attached 'Product data sheet'.

Dimensions

19-inch housing (model AO2020)

Wall-mount housing (model AO2040)

Notes

The connection box is flanged to the housing in IP54 version. Take into consideration the space required for the connecting lines (approx. 100 mm).

19-Inch inch rack housing: for sufficient air circulation, multiple housings in a 19-inch rack must be installed with a separation of at least one height unit between housings.

With an installed FID analyzer module with heated sample gas connection take into consideration the space required for the heated sample gas line corresponding to its minimum bending radius.

Wall-mounted housing: with an installed FID analyzer module, additional clearance (approx. 300 mm) above the housing is required since some assemblies can only be accessed from above.

Certifications and approvals

Performance tests

The AO2000 Series gas analyzers Uras26 (sample components CO, NO, SO₂, CO₂, N₂O), Magnos206 (sample component O₂) and electrochemical oxygen sensor (sample component O₂) are certified for use in combustion facilities requiring approval in accordance with European directives 2001/80/EG (13th BlmSchV - German Federal Immissions Control Ordinance) and 2000/76/EG (17th BlmSchV) as well as in facilities in accordance with 27th/30th BlmSchV and TA-Luft (German Technical Instructions on Air Quality). The requirements of QAL1 according to EN 15267 and EN 14181 are fulfilled. Report no.. 821029 of 6/30/2006; Notification: BAnz of 10/14/2006, no. 194, page 6715. Report no. 1249694 of 30.03.2009;

Notification: BAnz of 8/25/2009, no. 125, page 2932. Report no. 1710933 of 9/30/2011; Notification: BAnz of 3/2/2012, no. 36, page 923. Report no. 936/21217137/A of 10/14/2011; Notification: BAnz of 3/2/2012, no. 36, page 922. Report no. 1958844 of 8/30/2013, Notification: BAnz AT of 4/1/2014, no. B12, page 15.

The AO2000 Series gas analyzers Uras26 (sample components CO, NO, NOx, SO₂, N₂O, CO₂), Magnos206 (sample component O₂), Magnos28 (sample component O₂) and electrochemical oxygen sensor (sample component O₂) meet the requirements of the 'MCERTS Performance Standards for Continuous Emission Monitoring Systems, Version 3.5 dated June 2016', EN 15267-3:2007 and QAL 1 according to EN 14181:2014.

Certificate no. Sira MC080121/13 of 8/18/2017

The AO2000 Series gas analyzers Limas21 UV (sample components NO, NO₂, SO₂ and electrochemical oxygen sensor (sample component O₂) are suited for use in combustion facilities requiring approval in accordance with European directives 2001/80/EG (13th BImSchV) and 2000/76/EG (17th BImSchV) as well as in facilities in accordance with TA-Luft. The requirements of QAL1 according to EN 15267 and EN 14181 are fulfilled.

Report no. 2231669.1 of 9/1/2015; Notification: BAnz AT of 3/14/2016, no. B7, page 2.

The AO2000 Series Fidas24 gas analyzer (sample component Ctotal) is suited for use in facilities requiring approval (13th BImSchV, 17th BImSchV, 30th BImSchV, TA-Luft) as well as in facilities in accordance with 27th BImSchV. The requirements of QAL1 according to EN 15267 and EN 14181 are fulfilled. Report no. 936/21228173/A of 10/21/2015; Notification: BAnz AT of 3/14/2016, no. B7, page 2.

The AO2000 Series gas analyzer Uras26 (sample components SO₂ and CO₂) is suited for use on vessels. The requirements of MEPC.184(59) and MEPC.259(68), Chapter 6 'Emission Testing' as well as the relevant requirements of Revised MARPOL Annex VI and NOx Technical Code 2008 are fulfilled.

Certificate No. 30652-15 HH of November 27, 2015

The AO2000 Series gas analyzer Limas21 UV (sample components NO, NO₂ und NOx) is certified for use on vessels. The requirements of Revised MARPOL Annex VI and NOx Technical Code 2008 are fulfilled.

Certificate No. 31812-16 HH of 10/13/2016

CE conformity

The AO2000 Series gas analyzers satisfy the requirements of the European directives: 2014/35/EU Low Voltage Directive, 2014/30/EU EMC Directive, 2014/34/EU ATEX Directive (explosion-protected versions only) and 2011/65/EU RoHS Directive

Approval for USA and Canada - CSA

The AO2000 series gas analyzers are certified for use in 'general purpose' environments, evidenced by full compliance with standards CAN/CSA-C22.2 no. 61010-1-12 and UL Std. no. 61010-1 (Third Edition). Certificate No. 70012655

Approval for the customs union of Russia, Belarus and Kazakhstan – GOST TR CU

The AO2000 Series gas analyzers are certified for use in general purpose environment.

GOST TR CU certificate No. TC N RU Д-DE.AB72.B.02310 Pattern approval certificate for Russia No. DE.C.31.004.A No. 37985

Explosion protection to European standards

The AO2000 Series gas analyzers with Uras26, Magnos206, Magnos28, Caldos25 and Caldos27 in category 3G for measurement of flammable and non-flammable sample gas ('safety concept') satisfy the European standards EN 60079-15:2010, EN 60079-2:2014, EN 60664-1:2007

Marking:

🕞 II 3G Ex nA pyb II T4 Gc

The AO2000 Series gas analyzers with Uras26, Magnos206, Magnos28, Magnos27, Caldos25 and Caldos27 in category 3G for measurement of non-flammable sample gas satisfy the European standards EN 60079-15:2010, EN 60664-1:2007.

Marking:

(Ex) II 3G Ex nA nC IIC T4 Gc

The LS25 analyzer module in category 3G for measurement of flammable and non-flammable sample gas satisfy the European standards

EN 60079-0:2012 + A11:2013, EN 60079-15:2010, EN 60079-28:2015, EN 60079-31:2014.

Marking:

(Ex) II 3 G Ex nA nC [op is Ga] IIC T5¹⁾ Gc, -20°C ≤ T_{amb} ≤ +55°C ⟨E⟩ II 3 D Ex tc [op is Da] IIIC T100°C Dc, -20°C ≤ T_{amb} ≤ +55°C 1) T4 for selected applications

Type Examination Certificate No. Presafe 16 ATEX 8621X

Explosion protection to U.S. and Canadian standards - CSA

The AO2000 Series gas analyzers with Uras26, Limas21 UV, Limas21 HW, Magnos206, Magnos28, Magnos27, Caldos25, Caldos27 and LS25 are certified for use in potentially explosive atmospheres Class 1, Division 2, Groups A, B, C, and D, Temperature code T4, ambient temperature see page 39.

Housing versions not equipped with conduit entries must be installed in a suitable enclosure, cabinet or rack with provision for connection of Div. 2 wiring methods, acceptable to the local inspection authority having jurisdiction.

Certificate No. 1105720

Explosion protection for the customs union of Russia, Belarus and Kazakhstan - GOST TR CU

The AO2000 Series gas analyzers in the 'safety concept' version are certified for use in Zone 2 environment. Certificate No. TC RU C-DE. F604. B.00278

Explosion protection for China – NEPSI

The AO2000 Series gas analyzers with Uras26, Magnos206, Caldos25 and Caldos27 are certified for use in potentially explosive atmospheres. The gas analyzers may be used for measurement of non-flammable gases and vapors. Marking: Ex nA nC IIC T4 Gc

Certificate no. GYJ17.1139X

The AO2000 Series gas analyzers with Uras26, Magnos206, Caldos25 and Caldos27 are certified for use in potentially explosive atmospheres. They may be used for measurement of flammable gases and vapors. Marking: Ex nA nC py IIC T4 Gc Certificate no. GYJ17.1140X

Explosion protection for South Korea – KCs

The AO2000 Series gas analyzers with Uras26, Magnos206, Caldos25 and Caldos27 are certified for use in potentially explosive atmospheres. They may be used for measurement of flammable gases and vapors. Marking: Ex nA py II T4

Certificate no. 16-GA4BO-0670X

Sample components. smallest measuring ranges and suited analyzer modules

The following table lists the sample components that can be measured with the AO2000 Series gas analyzers (other sample components available on request). In each case, the smallest measuring range and the appropriate analyzer module are given. Please see the data of the individual analyzer modules.

Sample component		Requirements (examples)	Smallest range	Analyzer	Data
Acatulana		Small manage ranges colective management	0 100 nnm	module Uras26	Daga6
Acetylene Ammonia	C ₂ H ₂ NH ₃	Small meas. ranges, selective measurement	0100 ppm 030 ppm		Page 6 Page 6
Ammonia	INH3	Process measurement		Uras26	
A 1101 0 10	An im N	Combustion exhaust gas	0100 ppm	Limas21 HW	Page 10
Argon	Ar in N ₂	Especially short T ₉₀ time	97.5100 vol.%	Sample gas	Page 24
<u> </u>	Ar in O ₂	Especially short T ₉₀ time	02 vol.%	Sample gas	Page 24
Butane	C ₄ H ₁₀	Small meas. ranges, selective measurement	050 ppm	Uras26	Page 6
Chlorine	Cl ₂	Corrosive gases	0100 ppm	Limas21 UV	Page 8
Nitrous oxide	N ₂ O	Small measurement ranges	020 ppm	Uras26	Page 6
Ethane	C ₂ H ₆	Small meas. ranges, selective measurement	050 ppm	Uras26	Page 6
Ethylene	C ₂ H ₄	Small meas. ranges, selective measurement	0300 ppm	Uras26	Page 6
Helium	He in N ₂	Especially short T ₉₀ time	97100 vol.%	Sample gas	Page 24
Hexane	C_6H_{14}	Selective measurement	0100 ppm	Uras26	Page 6
Refrigerant	R 134a	Small measurement ranges	050 ppm	Uras26	Page 6
Carbon dioxide	CO2	Small measurement ranges	05 ppm	Uras26	Page 6
	CO2 in N2	Especially short T90 time	03 vol.%	Sample gas	Page 24
	or air				
Carbon disulfide	CS ₂	Toxic/flammable gases	050 ppm	Limas21 UV	Page 8
Carbon monoxide	СО	Small meas. ranges, emission measurement	010 ppm	Uras26	Page 6
Carbon oxide sulfide	COS	Toxic/flammable gases	0250 ppm	Limas21 UV	Page 8
Hydrocarbons	Total	Fast hot measurement	05 mg C/m ³	Fidas24	Page 26
	C _n H _m - CH ₄	Non-methane measurement	05 mg C/m ³	Fidas24 NMHC	Page 28
Methane	CH ₄	Small meas. ranges, selective measurement	050 ppm	Uras26	Page 6
	CH₄ in N₂	Especially short T ₉₀ time	99100 vol.%	Sample gas	Page 24
	CH ₄ in N ₂	Especially short T ₉₀ time	02 vol.%	Sample gas	Page 24
	or air		02 00	eunipie gao	. age = .
Propane	C₃H ₈	Small meas. ranges, selective measurement	050 ppm	Uras26	Page 6
Propylene	C ₃ H ₆	Small meas. ranges, selective measurement	0100 ppm	Uras26	Page 6
Oxygen	O ₂	Magnetomechanical measurement principle	00.5 vol.%	Magnos206	Page 14
e , y g e	01	Magnetomechanical measurement principle	00.5 vol.%	Magnos28	Page 16
		Trace measurement with ZrO ₂ cell	01 ppm	ZO23	Page 20
		Electrochemical measurement principle	05 vol.%	Oxygen sensor	5
	O ₂ in N ₂	Thermomagnetic measurement principle	03 vol.%	Magnos27	Page 18
	O_2 in flue		03 vol.%	Magnos27 Magnos27	J
	gas	Thermomagnetic measurement principle	03 001.76	Magnoszi	Page 18
Sulfur dioxide	SO₂	Emission measurement	025 ppm	Uras26	Page 6
		Corrosive gases	025 ppm	Limas21 UV	Page 8
SO ₂ in N ₂	SO₂ in N₂ or air	Corrosive gases	01.5 vol.%	Caldos25	Page 22
Hydrogen sulfide	H ₂ S	Exhaust gas, process measurement	025 ppm	Limas21 UV	Page 8
Nitrogen dioxide	NO ₂	Corrosive gases	050 ppm	Limas21 UV	Page 8
		Combustion exhaust gas	010 ppm	Limas21 HW	Page 10
Nitrogen monoxide	NO	Emission measurement	075 ppm	Uras26	Page 6
and ogen monoxide		Small measurement ranges	010 ppm	Limas21 UV	Page 8
					-
L huden ar an	11	Combustion exhaust gas	010 ppm	Limas21 HW	Page 10
Hydrogen	H ₂ in Ar	Especially short T ₉₀ time	00.25 vol.%	Sample gas	Page 24
	H_2 in Cl_2	Corrosive gases	00.5 vol.%	Caldos25	Page 22
	H₂ in stack gas	Especially short T_{90} time	00.5 vol.%	Sample gas	Page 24
	H ₂ in N ₂	Especially short T90 time	99100 vol.%	Sample gas	Page 24
		Corrosive gases	00.5 vol.%	Caldos25	Page 22
		Especially short T90 time	00.3 vol.%	Sample gas	Page 24

AO2000 CONTINUOUS GAS ANALYZERS | DS/AO2000-EN REV. C

51

ABB Automation GmbH Measurement & Analytics

Stierstädter Str. 5 60488 Frankfurt am Main Germany Tel: +49 69 7930-4666 Email: cga@de.abb.com

abb.com/analytical

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents – in whole or in parts – is forbidden without prior written consent of ABB.